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Abstract

Given the increase in scale and complexity of robotics, robot application development is

challenging in the real world. It may be expensive, unsafe, or impractical to collect data,

or test systems, in reality. Simulation provides an answer to these challenges. In sim-

ulation, data collection is relatively inexpensive, scenes can be procedurally generated,

and state information is trivially available. Despite these benefits, the use of simulators

is often limited to the early stages of application development. In this work, we take

steps to close the gap between simulation and reality, for Lidar simulation.

We adopt the perspective that the eventual purpose of a simulator is a tool for robot

application development. Our framework for sensor simulation consists of three compo-

nents. The first is sensor modeling, which describes how a sensor interacts with a scene.

The second is scene generation, needed to construct simulated worlds corresponding to

reality. The third is simulator evaluation, based on comparing real and simulated data.

We formalize the intuition that application performance must be similar in simulation

and reality, using an application-level loss. Our framework is broadly applicable to

simulating sensors other than Lidars.

We instantiate our framework for two domains. The first domain is planar Lidar simu-

lation in indoor scenes. We construct a high-fidelity simulator using a parametric sensor

model. We show how application development paths for our simulator are closer to

reality, compared to a baseline. We also pose sensor modeling as a case of distribution

regression, which leads to a novel application of a nonparametric method that adapts

to trends in sensor data. The second domain is Lidar simulation in off-road scenes. Our

approach is to build a library of terrain primitives, derived from real Lidar observations.

These are shown to generalize, resulting in an expressive simulator for complex off-road

scenes. For this domain as well, we quantitatively demonstrate that our simulator is

better for application development, compared to a baseline.

Our work suggests a generic approach to building useful simulators. We view them as

predictive models, and perform thorough tests on real data. We evaluate them with an

application-level loss, which supports their greater use in the development cycle.
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distribution regression. This work would have been incomplete without guidance from
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Chapter 1

Introduction

1.1 Motivation

The scale of robotics is increasing, evidenced by the growth in fields such as self-driving

cars, and unmanned aerial vehicles. This is accompanied by an increasing challenge of

developing software for robots. In fact, the difficulty of working with real robots can be

experienced even in a simple lab setting. Testing robots in real-world conditions can be

expensive, unsafe, or impractical. We illustrate these points using a few examples.

Figure 1.1: Simulation is useful in education, as an aid for students. Pictures are
from the Mobile Robot Programming Lab course, CMU. On the left is a Neato robot,
retrofitted as a fork-truck. On the right is a competition task between student groups.

The first example is related to education. At the Mobile Robot Programming Laboratory

(MRPL)1, a course at Carnegie Mellon University (CMU), students program all the

basic building blocks of mobile robots. Working through a series of assignments, they

learn about and implement position control, and trajectory planning. Students also use

planar laser range sensors on the robots to perform localization and object detection.

1http://www.frc.ri.cmu.edu/~alonzo/teaching/16x62/16x62.html

1

http://www.frc.ri.cmu.edu/~alonzo/teaching/16x62/16x62.html
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The course culminates in a competition between groups. This example comes from first-

hand knowledge, from our involvement in teaching the course. Despite the apparent

simplicity, students face non-trivial problems when working with robots. To start with,

the robots are a limited resource, which different groups must coordinate to share.

Students quickly face the quirks of working with real data, such as sensor noise. In

addition, deploying code-in-progress directly on robots can be unsafe. For example,

we have observed that, when testing their Proportional-Integral-Derivative (PID) code,

students might forget to reset integral error to 0. The result is a robot that accelerates

suddenly, which can lead to damage. Not only students, but also maintainers of the

course have dealt with hardware issues. For example, an intended motor upgrade to the

robots malfunctioned, putting a number of them out of service. Labs were delayed be a

week, an expensive amount of time during a semester.

Figure 1.2: Simulation is useful for outdoor mobile robots, where real-world tests
are expensive. On the left is the Crusher robot. On the right is an unmanned ground

vehicle from the Pegasus project. Both projects are from NREC, CMU.

Our second example is the domain of outdoor mobile robots. We refer to projects

from the National Robotics Engineering Center (NREC), CMU 2. Researchers at NREC

develop software, such as perception for off-road navigation [1], and virtualized reality

[2], for robots in challenging outdoor scenarios. Validating systems by testing in the

real world can be very expensive in this domain. For projects with the Crusher 3 robot,

which went on for 5 years, field tests were conducted every second week. An average

of ten people accompanied each field test. In the worst case, the cost for a week was

$250, 000. Unforeseen issues such as weather conditions may interrupt data collection

plans. Hardware failure on large systems can delay testing, incurring further cost.

A third example of the challenge of working with real systems is in machine learning for

robotics. Learning-based methods are widely used in robotics, especially in perception.

The challenges may be illustrated by considering classification, a common supervised

2http://www.nrec.ri.cmu.edu/
3https://www.nrec.ri.cmu.edu/solutions/defense/other-projects/crusher.html

http://www.nrec.ri.cmu.edu/
https://www.nrec.ri.cmu.edu/solutions/defense/other-projects/crusher.html
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Figure 1.3: Simulation is useful for learning algorithms, where collecting and annotat-
ing large volumes of real data is impractical. Pictures are from the work on Maturana
and Scherer [3] on helicopter landing zone detection. The picture on the left shows
predictions from a CNN. The right depicts simulated grass used to generate synthetic

training data.

learning problem. In the work of Maturana and Scherer [3], the classification problem

was to detect landing zones from autonomous helicopters. A convolutional neural net-

work (CNN) was used as the classification algorithm, and the input was Lidar range

data. CNNs were chosen for their high performance, and fast predictions. Deep learning

methods often require large amounts of training data. This was difficult to obtain in

[3], as the source of real data was expensive flight tests. Even after obtaining real data,

annotation of a large dataset can be daunting. Further, for multi-class classification,

it may be impractical to arrange for sufficient diversity of classes in a real dataset. A

related problem is domain adaptation. For example, assume that the classifier in [3]

was trained in sunny weather conditions, but the landing detection was then required

to work on a helicopter operating in a different season.

Figure 1.4: Some of the many modeling tools, and simulators.

Developing application algorithms for robot systems that operate in complex, real-world

conditions is thus challenging. Methods which simplify the process of application devel-

opment will thus be of wide-ranging impact to the robotics community. Simulation is

one such solution. Simulated data is cheaper to obtain than real data. In a simulated

environment, safety of systems and other hardware issues are not a concern. Simulation

worlds can also be generated (up to representation accuracy) to specification, allowing

tests in conditions that would be impractical to target in reality. Simulators for different
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Figure 1.5: Examples of the recent interest in simulation. From left to right, the
Gazebo simulator for the DARPA Robotics Challenge [4], simulation for visual tracking

[5] using Unreal Engine 4, and AirSim for aerial robotics [6].

phenomena have been developed (Figure 1.4). These include physics (such as simulat-

ing contacts and friction between soft and rigid bodies), graphics (such simulating the

interaction of light with different materials and textures), and various sensors (such as

simulating GPS, IMUs, cameras). The components are further bundled into specialized

packages, such as simulators for manipulation, aerial robots, and robot soccer, to name

a few. The domain of this work is range sensor simulation. While we mostly refer to

and work with Lidars, the techniques and language we use in this thesis are broadly

applicable to simulating other sensors. The motivation for focusing on Lidars is that

they are a key technology that have enabled advances in outdoor robots. They are often

used to provide a three-dimensional picture of the world to the robot. Applications are

routinely developed to process Lidar data, such as algorithms for scan matching, object

detection [7], and mapping [8]. Applications must deal with the noise and large scale

of Lidar data. They must be robust and have high performance, qualities which are

essential for good decision-making in the higher levels of autonomy. Lidar simulation

has been, or could be, used to address the challenges in each of the real-world anecdotes

mentioned above, as we briefly discuss next.

We built a simulator for the MRPL course mentioned earlier (Figure 1.1), which proved

useful in a number of ways. Working in simulation allowed students to make progress

even when shared real robots were occupied. Prototyping software in simulation added

a layer of safety. With regards to the mobile robots example, a Lidar simulator was

used during the Pegasus project at NREC 4, during the design of an unmanned ground

vehicle, see Figure 1.2. The decision of where to place a Lidar sensor was arrived at

by running simulations. This saved time for the hardware team, which would otherwise

have had to test different sensor configurations in reality. In the CNN-based landing

zone detection work of Maturana and Scherer [3], the authors used synthetic training

data in the absence of sufficient real data, see Figure 1.3. This use of a Lidar simulator

enabled the selection of architectures and hyperparameters and for the CNN. Synthetic

data is attractive for machine learning, since a large amount of data may be generated

4https://www.cmu.edu/news/stories/archives/2014/june/june3_robotteam.html

https://www.cmu.edu/news/stories/archives/2014/june/june3_robotteam.html
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procedurally. Since state information is trivially available in simulation, annotations can

be generated automatically. Other biases with real datasets, such as class imbalances

and inadequate diversity, can be overcome in simulation, since desired worlds can be

directly specified.

Simulation is closely tied with application development in robotics. In this thesis, by

application we refer to an algorithm to be deployed on the robot to perform some

task. By development we refer to the process of tuning and optimizing the algorithm.

Simulation is beneficial for application development in a number of ways, in addition

to those mentioned above. First, simulation is repeatable. The same tests can be run

repeatedly, even as an application algorithm is modified. Achieving this in reality is

difficult. Second, desired worlds as test environments can be be specified in simulation.

For example, we might want to test perception algorithms in a dense forest. Locating

and scheduling such a test in reality may be expensive, but is easier in simulation. Third,

state information can often be trivially obtained in simulation. The same information

may not be available in reality. This allows simulated testing of applications in ways,

and using metrics, not possible otherwise. For example, consider the application of

visually tracking a target. The tracking algorithm may internally estimate the velocity

of a target. In reality, the state of the target may not be known, and a metric such as

bounding box overlap may be used to evaluate the tracking algorithm. In simulation,

however, the target state will be known. This information can be used to compute

additional metrics for the algorithm. It may lead to insights, such as poor performance

because of errors in target velocity estimation.

In fact, simulators are already part of the application development timeline in robotics.

However, their role may be limited. Simulators may be used in the early stages, to test

initial implementations, and catch obvious bugs. As development proceeds and an ap-

plication matures, simulation may be set aside. Testing in reality may be favored. Why

is this the case, given the benefits of simulation outlined? Our answer is that a useful

simulator has three components: sensor models, scene construction, and simulator eval-

uation. The sensor models must be high-fidelity. Scenes constructed in simulation must

be realistic, or more strictly, must correspond to real scenes. Evaluation of simulators

must be thorough, and meaningful in the context of robot application development. A

lack of any of these leads to a simulator of limited value. We discuss these, once again,

in the context of the simulation anecdotes.

When developing a Lidar simulator for the MRPL course, we found that a vanilla ray-

tracing sensor model was not good enough. Students preferred to work with real robots,

because the simulated data was too clean. As an example, consider the situation in

Figure 1.6, which is similar to one of the course assignments. The task is to detect a
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scene naive simulation real observations

target

robot

wall

Figure 1.6: A detection task. The first panel shows the scene. The target is to be
detected from range data. The second panel shows range data form a naive simulator.
In this data, it is easy to locate and navigate to the target. The third panel shows the
real range data, which is noisy and has missing data. The same algorithm would find

a false positive, and cause the robot to drive into the wall.

target, which the robot has to approach and pick up. Behind the robot is a wall. In

a naive simulation, developing software to detect the target, while ignoring sensor data

from the wall, is simple. In reality, there are breaks in the sensor data. A detector

developed on the naive simulator might detect a false positive, and the robot drives

straight into the wall. While the aim of simulation is to ease the burden of working with

reality, this should not come at the cost of simplifying real data. Because the real Lidar

sensor was noisier than the vanilla simulator, applications developed by students which

performed well in simulation would degrade in reality. They switched to working with

real data once simulation stopped being a useful source of feedback. This observation

led us to use high-fidelity sensor models in our simulator.

We mentioned in the outdoor mobile robot anecdote (Figure 1.2) that a Lidar simulator

was used to decide the placement of a sensor. While useful, the drawback with the

simulator in that case was that it was ‘geo-specific’. This was because the Lidar simulator

was constructed by mapping a real site. Lidar data could be simulated in only one

simulated scene, which was the mapped version of the real scene. While simulated data

was high-fidelity, the simulator was inexpressive. We mentioned earlier that simulators

are useful because they allow the specification of desired worlds. But this ability is

limited by the expressiveness of the simulator. Outdoor missions might require testing

in a number of real environments. The ability to support the creation of simulated

scenes corresponding to complex real world scenes is important for simulation.

Finally, in the work of Maturana and Scherer [3] on autonomous landing zone detection

(Figure 1.3), a problem noted was Lidar simulator evaluation. First, it was difficult to

create simulated worlds corresponding to real landing zones. An expressive simulator,
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where the real world can be reconstructed, is thus important even for simulator simula-

tion. Second, it was observed that the performance of algorithms in simulation was an

optimistic estimate of performance in reality. Admittedly, simulation was not the cen-

terpiece of [3]. Even in other projects developing applications for autonomous systems,

simulation may not be the focus. But unless simulators are evaluated in a principled

way, for the purpose they are intended for, trust in simulation will remain low.

1.2 Outline of approach

Indoor Lidar simulator Off-road Lidar simulator

Figure 1.7: Real and simulated scenes from our work. The left figure depicts the
indoor Lidar simulator. The right figure depicts the off-road Lidar simulator

The potential benefits of simulation, and the drawbacks of current approaches, are mo-

tivations to build better Lidar simulators. At a high level, our approach is to consider

each component of simulation individually: sensor models, scene generation, and sim-

ulator evaluation. We instantiate the high-level approach in the construction of two

Lidar simulators. The first simulator is for a planar Lidar sensor operating in indoor

environments. The second simulator is for a 3D Lidar sensor operating in off-road en-

vironments. In either case, we demonstrate an improvement over existing simulation

methods. The outline of the thesis document is as follows.

sensor 
model

scene 
generation

simulator 
evaluation

z
0 5 10 15 20

h

0

0.05

0.1
true histogram

z
0 5 10 15 20

ĥ

0

0.05

0.1
NP-Reg

0.1
P-Reg Off-road Lidar simulatorNon-parametric sensor modelSimulator components

Figure 1.8: Our work includes a formulation for general sensor simulation (Chapter
2), non-parametric sensor models (Chapter 3), and complex off-road scene generation

(Chapter 4).

• Chapter 2 contains the terminology used in this thesis. It is the common lan-

guage which we use to speak about both indoor and off-road Lidar simulation.

We describe our notation and mention assumptions. We approach evaluation in a
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data-driven manner, and show how this approach requires the construction of re-

alistic scenes in simulation. We specify what is meant by application development,

and note the difference between observation-level and application-level simulator

evaluation. The benefit of introducing our terminology is that past approaches to

evaluating simulators can be discussed in common terms. We can view them as

specific cases of our more general approach. While our work is in Lidar simulation,

we believe that our high-level approach is broadly applicable. It can be used to

guide the construction of any sensor simulator.

Note that there are other aspects of simulators: their software architecture, com-

munication between modules, user interfaces, and others. While important, these

are not the focus of this thesis.

• Chapter 3 details the simulation of a planar Lidar in indoor scenes. The motivation

was a classroom simulator. The simulated scenes in this case are simple, and the

contributions are in the sensor model. We first use a specific parametric model

which is able to reproduce quirks in real sensor data. Then, in response to the

question of whether it is possible to simulate sensors directly from raw data, we

reply in the positive with a completely non-parametric approach. This is a novel

application of a recently developed non-parametric regression method to modeling

sensors. We then perform application-level simulator evaluation. We demonstrate

the approach via two fundamental mobile robot tasks: object detection and state

estimation.

The non-parametric regression method we use is conceptually simple. It is efficient

to apply to modeling any sensor with unidimensional output. We demonstrate this

by modeling a probe used in medical applications.

• Chapter 4 details the simulation of a 3D Lidar in off-road scenes. The motivation

was off-road autonomy missions. The sensor model in this case is consists of hybrid

geometric elements. It is a representation well-suited to simulating Lidars interact-

ing with off-road terrain, such as vegetation. Our contribution is the introduction

of expressiveness to such a simulator. We extract terrain primitives from training

data, which results in a primitive library optimized for simulation. The primitives

can then be used to construct new simulated scenes. We evaluate the simulator in

complex, real-world scenes of interest. In this case, we perform application-level

evaluation for scan matching.

Our approach can also be used to simulate arbitrary scenes, and to efficiently

map off-road sites. We have generated labeled datasets in the course of our work

on simulation. These may be of independent interest, e.g. for Lidar semantic

segmentation and object detection.
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• Chapter 5 concludes the thesis. We highlight lessons learned and summarize the

contributions. We list short-term directions for improving the simulators con-

structed in this thesis. We also discuss long-term paths for future work.

Discussion of related work is included in each chapter. For work on the individual

simulators, we also include extra notation where necessary.



Chapter 2

Background

This chapter contains the terminology used in this thesis. We describe our notation

and mention assumptions. Broadly, we view a Lidar simulator as a predictive model,

consisting of three parts: a sensor model, a scene generator, and an evaluation method.

2.1 Sensor modeling

state

observation

pose

dataset

point cloud

Figure 2.1: Some of the notation illustrated for a Lidar sensor in an off-road en-
vironment. On the right, the dotted line represents the path taken by the vehicle.

Information gathered along the path is the dataset.

The state of the world in reality is denoted by x. We consider all information that affects

sensor observations as part of the state. This includes the pose of the sensor, qsensor,

and the sensor’s environment. The state space is denoted by X . The sensor observation

is denoted by z. The observation can be a vector. For a Lidar sensor, the observation

is a set of range returns z = {zj}, where the subscript j denotes coordinates of the

observation vector. The returns in an observation may correspond to a sensor-specific

10
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scanning (or firing) pattern. A return is just a real number in the case of a hit, and a

‘nothing’ value in the case of a miss. Sensor observations are typically noisy, so no two

observations at a particular state will be equal. We take this into account by saying

that the true behavior of a sensor is represented by the observation distribution, p(z|x),

which specifies the probability (density) of an observation at a particular state.

It is unlikely that the real world will be recreated exactly in a simulator. Therefore, we

denote the world state in simulation by x̂. The corresponding space of simulated world

states is X̂ . Simulated observations are denoted by ẑ. A sensor model is a model of

the true observation distribution, and denoted by p̂(z|x̂). Note that the sensor model

depends on the simulator state. A simulator does not have access to the real state

x. Simulated observations are samples drawn from the sensor model, ẑ ∼ p̂(z|x̂). The

sensor model can be deterministic, as in the case of a simple ray-trace simulator.

The sensor model may have parameters which can be tuned to optimize the model. In

this work, we consider data-driven sensor models, which are optimized on real data.

This requires a dataset D, which is a set of state-observation pairs D = {(xi, zi)}. In

practice, we might only have access to a part of the real state. We overload the dataset

notation and make its contents clear, where required. For example, in the off-road

case, the dataset is a set of sensor pose-observation pairs, D = {(qsensor,i, zi)}. Since

lidar observations are naturally viewed as points in space, we will often convert a set of

observations into a point cloud. A range return that results in a hit, when transformed

into the world frame, using the sensor pose qsensor, results in a point denoted by y ∈ R3.

A set of points in the world frame, often accumulated over multiple observations, results

in a point cloud denoted by Y = {yj}.

2.2 Scene generation

By scene generation, we refer to the construction of simulated worlds in which to query

sensor observations. Our reasons for paying attention to scene generation require a

notion of simulator evaluation. Evaluation is the subject of Section 2.3 below. For now,

however, we work with the understanding that a simulator is optimized by matching

simulated sensor observations to real observations. First, consider the simplest method

of selecting a sensor model, classic calibration. In calibration, the sensor is placed in

a controlled setup. For example, a range sensor may be placed on a measuring table,

pointing at a plain target such as a flat surface (Figure 2.2, top). The distance to the

target, which is also the state x, can be accurately measured. Observations are logged

at a state, and the data collection is repeated at different states, resulting in a dataset of

state-observation pairs, D = {xi, zi}. The simulated state is simply the distance to the
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Figure 2.2: The progression of simulator training from laboratory indoor scenes to
complex off-road scenes.

target, which has been measured in reality, x̂i = xi. The simulator in this case is simply

the sensor model, p̂(z|x̂). Matching simulated observations ẑi to real observations zi

leads to an optimized sensor model.

Of course, our sensor’s operating condition may not be a sanitized laboratory. Suppose

we want to construct an off-road Lidar simulator. The objects that the Lidar looks at

might more likely be uneven ground and vegetation. To this end, we could replace the

flat surface in the calibration setup with a real plant (Figure 2.2, middle). To generate

corresponding simulated observations, the simulated scene would now have to contain a

simulated plant. The simple distance-to-target state description is not enough. Scene

generation is more difficult in this case. The simulated plant may not match the real

plant in terms of position, shape, and so on.
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After selecting a sensor model with the sample plant, the next step would be to place

the sensor on a robot and take it outdoors, into the type of real environment that we

eventually want to simulate in (Figure 2.2, bottom). It is important that we take this

step forward to train simulators in complex scenes. Otherwise, the simulator may be

dismissed as good only for toy worlds, leading to a gap between simulation and reality.

The problem of scene generation is immediately apparent here. To simulate observations

that can be compared with real data, we have to reconstruct a complex real scene in

simulation. Note the difference between realistic and reconstructed simulated scenes.

A realistic simulated scene does not correspond to a real scene. Although it may be

similar (according to some metric) to the real world. This may be a common use case

for a simulator: hallucinating worlds to test applications in. A reconstructed simulated

scene is an analogue of a real scene. The latter is more challenging, but the payoff is

a principled evaluation of the simulator. Hence the connection between evaluation and

scene generation. Once a simulator has been validated for reconstructed scenes, its use

in realistic scenes is justified.

sim state space real state x
 (

m
)

-490

-480

-470

-460

simulated state

sim state space real state simulated statesimulated state

sim state space sim state space

Figure 2.3: Generating a simulated world state corresponding to a real world state
can be thought of as a projection onto the simulator state space.

The space of simulated states is X̂ . We can informally interpret the ‘size of X̂ ’ as the

expressiveness of the simulator. For example, suppose that the library of objects in

simulator 2 is a superset of the library in simulator 1 (Figure 2.3, top). Simulator 2

is a more expressive simulator, since more diverse real scenes can be reconstructed in
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simulation . Given a real state x and some simulator with space, X̂ , however, we still

need to map x to a simulated scene x̂. This can be thought of as a projection operation,

that is (i.e.), selecting the simulated scene closest to the real scene. For simulator 2, a

good scene projection leads to simulated scene with state x̂1 (Figure 2.3, middle). A

poorer scene projection results in a scene with state x̂2, and x̂1 is a better reconstruction

of x̂. Figure 2.3, bottom, depicts a scene generation in a different simulator. While

simulator scene space X̂2 uses mesh objects, X̂3 uses Gaussian distributions to model

objects. In our work, the projection step is manual. It can, however, be automated

using well-known Lidar processing tools, as discussed in Section 5.2.2. Details of the

scene representation chosen for our indoor and off-road Lidar simulators are in Chapters

3 and 4, respectively.

2.3 Simulator evaluation

In Section 2.2 we said that a simulator is evaluated by comparing simulated data with

real data. Borrowing language from learning theory [9], we compare them using a

quantity called the loss l. The loss, averaged over a dataset, is called the empirical

risk R̂. By simulator evaluation, we formally mean the calculation of the empirical risk

over a dataset. We first discuss simulator training, and then different choices for the

simulation loss.

2.3.1 Data-driven simulator training and test

For evaluation, we first collect a dataset in a real scene, D = {xi, zi}. Although we write

the real dataset as containing the real state, typically only partial state information will

be available. We generate a simulated scene corresponding to reality. It is assumed that

the real dataset contains the sensor pose information, qsensor,i. We query observations at

the sensor poses, to generate a corresponding simulated dataset, D̂ = {x̂i, ẑi}. Writing

the simulated dataset as containing the full simulated state is exact. The simulator can

then be evaluated by comparing the real and simulated data, using the simulation risk.

The simulator typically has parameters θ. These could include parameters for the sensor

model and the scene generation. For simulator training, a training dataset is collected.

The parameters θ are then tuned to reduce the risk on the training dataset, resulting in

an optimized simulator, say with parameters θ∗. The evaluation process is then repeated

on a separate test dataset. The simulator is not to be tuned on the test dataset. The

empirical risk on the test dataset is only calculated for a single set of parameters θ∗,

allowing it to serve as an unbiased estimate of the simulator’s performance.



Chapter 2. Background 15

simulation

reality

simulation 
risk

reality

simulation

simulation 
risk

optimization

train test

Figure 2.4: Real data is compared with simulated data using the simulation risk. The
simulator is optimized to minimize the risk during training. The risk is calculated on

a test scene for an unbiased estimate of simulator performance.

2.3.2 Observation-level loss

An observation-level loss compares simulated and real data at the level of raw observa-

tions. For a Lidar sensor, where the observation is a vector of range returns, z = {zj},
we can define the loss and risk to be

l(z, ẑ) =
1

M

M∑
j=1

|zj − ẑj |, R = E l(z, ẑ), (2.1)

where M is the number of returns in an observation. In practice, a modification to

the loss may be necessary to account for the hits and misses among the range returns.

The risk is an expectation of the loss, calculated with respect to some distribution of

states and observations p(x, z). For a dataset of size N , with data sampled from the

distribution p(x, z), we calculate the empirical risk

R̂ =
1

N

N∑
i=1

l(zi, ẑi). (2.2)

The simulator training procedure can be rewritten as minθ R̂(θ). The averaging step

in the risk means that, even if risk were low, the simulator may infrequently simulate

observations that do not agree with reality. Where infrequently is with respect to the

distribution p(x, z). The risk may be defined as the worst-case loss, R = max l(z, ẑ),

with the maximum taken over all real observations. However, this quantity is impractical

to work with. Defining the risk as an average makes it tractable to compute. It also
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allows the provision of guarantees under the framework of statistical learning theory [9].

In practice we do not deal with the distribution p(x, z) directly. It is implicit in the

data collection procedure. The kind of generalization we expect from the simulator is

specified through the distribution. For example, we may want to build a Lidar weather

simulator, with high-fidelity simulation of Lidar data across conditions such as clear

skies, snow, and rain. Our target distribution would then be over scenes with varying

weather conditions. It must be kept in mind that low risk on one distribution does not

directly imply good simulator performance on another distribution. These are standard

caveats with any learning-based method.

2.3.3 Application development

Informally, a low observation-level risk means that, on average, simulated data agrees

with reality. However, in robotics, the aim of simulation is not just the generation of

sensor-realistic observations. A simulator is a tool used to develop an application to be

deployed on a real system. Intuitively, a useful simulator is one in which application

development proceeds similarly to how it would in reality. In this section, we specify

what is meant by application development.

An application algorithm is denoted by A. When clear, we will use the terms application

and algorithm interchangeably. An algorithm A is associated with tunable parameters

α. These are unrelated to the simulator parameters θ. The performance of the algorithm

is measured using an algorithm objective J , with a low objective indicating high perfor-

mance. The algorithm objective J(α,D) is calculated for a set of algorithm parameters

α, over a dataset D. As an illustration, consider 2D localization as a hypothetical appli-

cation, and the algorithm A to be scan matching (Figure 2.5, top). Lidar range data is

to be matched to a map of the environment. The range data is depicted as red points,

and the map is depicted as blue lines. The solid arrow represents the true pose of the

robot. The output of the algorithm, the estimated pose after scan matching, is depicted

as a dashed arrow. The Lidar data is transformed to points based on the estimated

pose. Real sensor noise is exaggerated for illustration. For simplicity, the algorithm has

a single parameter α, the maximum inlier distance to the map. The closest distance of

Lidar points to the map is computed, in the input robot frame. If this distance exceeds

α, then the point is marked as an outlier and not considered for scan matching. Each

instance i in the dataset D is a scan matching problem, consisting of a map, the initial

pose, and the ground-truth pose of the robot, say qi. Denote the output of the scan

matching algorithm by q′i. The ground-truth pose is not input to the scan matching

algorithm. It is only used to compute the error of localization. The algorithm objec-

tive can be chosen to be the following, where the dependence of J on the algorithm
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Figure 2.5: A hypothetical scan matching application to illustrate application-level
loss. There is one parameter, the maximum inlier distance, which is to be tuned on

data.

parameters α is implicit,

J(α,D) =
1

N

N∑
i=1

‖qi − q′i‖.

We can also choose the performance to take into account other metrics of interest, such

as the number of times a particular bug (such as a system crash) occurs. By application

development, we refer to tuning the algorithm parameters to minimize the objective (or

maximize performance). For example, for the scan matching example, the algorithm

parameter α is the maximum inlier distance. A suitable value for this parameter is not

known a priori. In an ideal world all points would be inliers, but in reality, outliers

will exist due to sensor noise, unmapped objects in the world, and other reasons. The

optimal value for α will require a process of development. Given dataset D, we write

the iterations of application development as {(αi, Ji)}. We attempt to improve the per-

formance of the algorithm in successive development iterations, as depicted for the scan

matching example in Figure 2.6. The dataset consists of a number of maps and scans.

Initially, the algorithm performance is poor, as depicted by the estimated poses (dashed
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Figure 2.6: Application development is the process of tuning algorithm parameters α
to minimize the algorithm objective J on a dataset. The algorithm performance may

finally be calculated on a test dataset.

arrows) being far from the true poses (solid arrows). As development proceeds, the esti-

mated poses line up with the true poses. At the termination of algorithm development,

the algorithm is ready to be deployed on the robot. We denote this terminal point as

(α∗, J∗), where Ji = J(αi, D), and J∗ = J(α∗, D). Application development can thus be

viewed as tracing a path in the space of algorithm parameters and objective, (α, J). The

algorithm objective may be finally calculated on a test dataset, serving as an unbiased

estimate of the algorithm performance.

Application development is agnostic to the source of data. For the scan matching ex-

ample, assume we had access to a Lidar simulator. When it is difficult to collect real

data, application development may first occur in simulation. The illustration for the

scan matching example, Figure 2.7, is analogous to development in reality, Figure 2.6.

This results in a development path, {(α̂i, Ĵi)}, where Ĵi = J(α̂i, D̂).

2.3.4 Application-level loss

Our application-level loss connects the evaluation of a simulator to its purpose, and is

intended to be a meaningful evaluation of the usefulness of a simulator. The algorithm

objective J(α,D) defined in Section 2.3.3 is agnostic to the data source. Now, for sim-

ulator evaluation, we are given a real dataset D, for which we simulate a corresponding

dataset D̂. For the same algorithm parameters α, we can compute the algorithm ob-

jective both in reality and simulation. These are J(α,D) and J(α, D̂), respectively.
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Figure 2.7: Application development for the same scan matching algorithm, but in
simulation.

Consider a simulation loss defined as

l(α) = |J(α,D)− J(α, D̂)|. (2.3)

This application-level loss can be thought to measure the gap between simulation and

reality, from the perspective of the application. However, this loss is a function of

the algorithm parameters. Since these are not fixed, it leads to the question of which

parameters to calculate the loss for. Answers are suggested by the process of application

development.

loss of best algorithm 
in simulation

Figure 2.8: An application algorithm trained in simulation may degrade when trans-
ferred to reality. The difference can be quantified by the simulation loss.
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Say the process of application development in simulation resulted in the path {(α̂i, Ĵi)}.
If we only cared about the best performing algorithm, we would compute the loss for α̂∗,

|J(α̂∗, D) − J(α̂∗, D̂)|. Further, consider that the Lidar simulator did not capture the

non-idealities of the real data, which are high variance in range readings, sensor dropouts,

and outliers. It is often observed that the performance of an algorithm degrades when

it is transferred to reality. The loss for α̂∗ enables calculation of this performance gap

during transfer. For the scan matching example, since the simulated data is relatively

‘clean’, increasing the maximum inlier distance improves performance. Lower objectives

are achieved in simulation than in reality, and the performance gap is depicted in Figure

2.8.

Figure 2.9: Illustration of the application-level risk. Each row is a particular set of
algorithm parameters. Each column represents a real scene and corresponding simu-
lated scene. Each bracket entry is the difference in performance between simulation
and reality. The (empirical) simulation risk is the sum of losses over the αk sampled

from distribution p(α).

In cases where we are concerned only with the best performing algorithm parameters,

application development is simply an optimization. In these cases, we can take the

simulation risk to be l(α̂∗). However, we can also consider cases where the losses at

parameters other than α̂∗ are of interest. For example, suppose the scan matching algo-

rithm was under development by students in a classroom setting. They may manually

explore the parameter space in order to understand the effects of different parameters on

the algorithm performance. In application development, roadblocks encountered when

working with real data can provide useful insight into a system’s operation. We would

like simulation to be useful in this broader sense: it should challenge application devel-

opment in a manner similar to reality, resulting in similar bugs, and leading to similar
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design decisions. We could take the simulation risk as the maximum loss over the space

of algorithm parameters, but this quantity is not tractable to compute. Instead, we de-

fine the empirical risk as a mean over parameters {αk}, k = 1 : K drawn independently

from a distribution p(α),

R =
1

K
Ep(α)l(α), (2.4)

R̂ =
1

K

K∑
i=1

l(αi). (2.5)

For the scan matching example the risk is visualized in Figure 2.9. Informally, a low

application-level risk means that, on average, algorithm performance on simulated data

agrees with reality. We would expect the simulator to provide similar feedback as reality,

even when algorithm performance is poor. This definition of the risk does not depend

on a particular algorithm development path.

Figure 2.10: Upto now we considered a single simulator. We can calculate the
application-level simulation risk in a similar manner for another Lidar simulator. This

second Lidar simulator is better at modeling the real sensor noise.

The simulator risk gives us a precise way of comparing two simulators. For the scan

matching example, suppose we had a second, more realistic simulator, Figure 2.10. If

R̂2 < R̂1, then we can make the claim that simulator 2 is better for the purpose of

developing some application than simulator 1. See Figure 2.10.

A related, qualitative way of comparing simulators is by comparing application develop-

ment paths. In a typical setting, initial application development may occur in simula-

tion, and suppose that this development path was {(α̂i, Ĵi)}, where Ĵi = J(α̂i, D̂). In our
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Figure 2.11: Comparing algorithm development paths in simulation and reality.

case, since we have a real dataset corresponding to the simulated one, we can compute

the objective for these parameters on the real dataset as well. This results in a path

{(α̂i, J(α̂i, D))} representing performance in reality, which is invisible during application

development in simulation. For the scan matching example, this is depicted in Figure

2.11. Imagine that the scan matching algorithm is trained in simulation. The developer

working in simulation sees the pink curve. The red curve shows the corresponding ob-

jective of the same parameters in reality. At a point in the development path, we may

zoom in, and analyze the difference in feedback provided by real and simulated data.

For example, on simulated data, it may benefit to keep increasing the maximum inlier

distance. On the other hand, the real data has outliers. The pose estimate becomes

worse if the outliers are considered for registration.

2.4 Assumptions

We summarize the assumptions made in the formulation.

• We assumed that the real dataset D contains the sensor pose as part of the state.

Localization robots in off-road environments is a challenging problem in itself,

which we assume has been solved before turning attention to simulation. This

choice simplifies the formulation used.

• Time is not explicitly part in our formulation, but is implicit in our assumption

that the pose is known. We assume that the scene is stationary during data col-

lection. Whether the sensor is stationary or dynamic depends on the domain.

For the indoor Lidar simulator, we work with training data in the form of sen-

sor histograms at each state. This requires data collection while the sensor was
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stationary. For the off-road Lidar simulator, in contrast, training data was col-

lected while a Lidar sensor mounted on a ground vehicle was being driven. For

the purpose of simulation, scenes can be stationary or dynamic.

• We assumed, for application development, the availability of a real dataset D. An

argument can be made that under this assumption, D can be used for application

development directly, ignoring simulators. And that a simulated dataset D̂ will

be used primarily where D is difficult to collect. This argument misses key points.

First, our aim is to evaluate simulators in a principled, data-driven manner. A

simulator can be a predictive model as complex as an application developed on it,

and there is no reason to expect that such evaluation will require less data than

application development does. Second, it is such data-driven evaluation based on

D that motivates application development in simulation in place of reality, as we

expect the simulator to generalize to similar datasets. Third, a final iteration of

application development for robots will likely require real data, and this can be

later utilized to evaluate the simulator.

• We assumed that an algorithm A we develop is ‘open-loop’, that is, the dataset

of states and observations is not dependent on the output of the algorithm. This

assumption allows us to collect a real dataset and use it off-line for simulator

evaluation.

2.5 Related work

We discuss related work for application-level simulator evaluation in this section. Re-

lated work for sensor models and scene generation are more appropriately discussed

with each simulation domain. They can be found in Section 3.2 and 4.2 for indoor and

off-road Lidar simulation, respectively. In prior work on general-purpose robotics simu-

lators, such as Gazebo [4, 10], and Player/ Stage [11], the focus was on aspects such as

software architecture, interfaces, and speed. In other work [12–14] there was comparison

among simulators, but not between simulation and reality. Simulators such as BlenSor

[12] and VANE [15] often make use sensor models for different sensors. These may be

validated individually [6, 16] in controlled environments, similar to standard calibration

experiments. The models may then be tested in increasingly complex and realistic envi-

ronments. For example, [17] evaluated range finders in smoky environments. A challenge

in this progression is to create simulated worlds corresponding to real worlds. In work

on VANE [15], GPS data from a real environment was compared to simulated data from

a ‘geo-typical’ simulated world. How well the real and simulated worlds matched was

unknown. In [18], an outdoor Lidar simulator was evaluated in real scenes of interest.



Chapter 2. Background 24

Another way of stating that evaluation of simulators be performed on the kinds of scenes

we are interested in developing applications in is to say that the train and test domains

of simulators must be the same. Otherwise we need to deal with the additional problem

of domain adaptation [19]. Domain randomization [20] is a recent technique to assist in

the transfer of deep neural networks from simulation to reality. In our work, we perform

evaluation on simulated scenes which exactly correspond to complex real-world scenes.

Our work can be thought of as a validation step, the positive outcomes of which can

be used to ground more complex steps such as that presented in [20]. While most of

these evaluations were observation-level, some used an application-level loss. In work

on AirSim [6], real and simulated data obtained from executing some trajectories on

a quadrotor were compared. The simulator USARsim [21] was also evaluated at an

application-level, for HRI studies. In the language of our approach, the simulation loss

was computed for particular algorithm parameters in [6, 21]. The notion of application

development was not further used in evaluation, while we define a simulation risk.

The use of simulation in application development has been studied in [22, 23]. Simulation

can be used to generate a synthetic dataset with the size, variety, and annotation detail

that a real datasets lacks. Simulated data can also be varied in a controlled way to

uncover performance trends of algorithms in simulation. In [22], extensive testing of

aerial tracking algorithms on a synthetic dataset was performed, with insights such as

sensitivity of performance to target scale variation. In [23], simulated data was used to

investigate visual recognition and SLAM algorithms, with insights such as performance

trends with respect to the time of day. How well such insights transferred to reality

was unaddressed in [22], and limited in [23]. Evaluating the simulator itself was not the

focus, as both relied on Unreal Engine 4. In addition, how well the simulated worlds

in [22, 23] mapped to real worlds was unknown. Simulator evaluation in our approach

requires data from a real world, and a corresponding simulated world. Our work can

be seen as complementary. A simulator can be evaluated at the level of an application,

and then be used to investigate algorithms in ways not practical in reality.

There has been much work making use of simulation in computer vision [24–26], to

augment real training data. For example, [27] presented a synthetic dataset for urban

semantic segmentation. The simulated dataset, generated in Unity, was designed to

improve on real datasets in terms of object classes, variability, and so on. The utility of

simulation was demonstrated by showing that a neural network, trained on a combina-

tion of real and synthetic data, performed better than one trained on real data alone.

Simulator evaluation was not the focus, and simulated worlds were generated heuris-

tically. In contrast, in [28], simulated indoor scenes in were created using statistics of

real scenes. A virtual KITTI dataset was presented in [5], in which simulated worlds

were created to correspond to real KITTI videos. Simulation was evaluated, for the
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application of object tracking algorithms, by comparing performance of an algorithm in

simulation and reality. This quantity, in our approach, is just an application-level simu-

lation loss. We also take a broader view of development, quantified using the simulation

risk. In addition, we compare multiple simulators, while [5] evaluated only the one that

was utilized. We further note that, in [5], simulation was evaluated by calculating a

simulation loss for an algorithm parameter α which had been optimized, in part, to re-

duce the loss. We believe our loss is more representative of robot applications, since the

parameters we use are not aware of the real dataset, making our risk is a more unbiased

measure.



Chapter 3

Indoor planar Lidar simulation

3.1 Introduction

We study the problem of building a planar Lidar simulator for indoor scenes. We are

motivated by a desire to reduce the cost and complexity of robot application develop-

ment, while increasing the quality of the resulting software. Perception systems that

operate on data from rangefinders need to be robust to noise in the sensors. The al-

gorithms in the pipeline often preprocess the data, and have parameters for thresholds

such as outlier checks. The conventional wisdom is that robot applications developed

in simulation will need significant rework before they work on hardware. We adopt the

perspective that if simulators were only good enough, this would no longer be the case.

Indeed, if the data produced by a simulator were as poor in quality as real data, then

application developers could address the right issues earlier in the development cycle.

They could do so using better debugging tools, and produce a higher quality result, with

less effort.

Our focus in this chapter is on sensor modeling. The sensors we work with in robotics

are often noisy, and operate in varied environments. Sensor models, which model the

distribution of observations given state, help deal with these challenges. They are a

widely used and integral part of robotics. To note two examples, they are a component

of state estimation algorithms [29], used in updating state based on sensor readings.

Observation distributions are also the workhorse of simulation [30], used to generate

samples.

One of our motivations was to build a simulator for the rangefinder on a Neato robot

(Figure 3.1b). The rangefinder is a low-cost planar laser range sensor, and further

details regarding the construction can be found in [31]. A number of retrofitted Neato

26
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(a) Mobile Robot Programming Lab, CMU (b) Neato robot

robots were used in the Mobile Robot Programming Lab, CMU (Figure 3.1a). In the

course, students develop software for mobility and perception. Providing the class with

a simulator was one of the original motivations for this work. Despite its simplicity,

there is sufficient richness in this task to illustrate the benefits of the approach we take.

The Neato sensor’s behavior is non-ideal in a number of ways. In Figure 3.2, a range

scan from an L-shaped corridor is shown. Certain readings have large biases, which

may be peculiar to the particular sensor. The readings have a variance which grows

with obstacle distance. There are sensor dropouts, which means that certain readings

consistently miss, even when an obstacle is in the range of the sensor. A vanilla sensor

simulator, as may be found e.g. in Gazebo [10], is unable to generate realistic data.

In addition, we are interested in a simple and principled procedure to acquire a sensor

model, which practitioners can implement for their own sensors.
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Figure 3.2: Non-idealities in the real sensor. Systematic bias (1), increased variance
with increased range and angle of incidence (2), dropouts (3). The black arrow depicts

the 2D pose of the sensor.

In Section 3.4.2.1 we describe our first approach, a parametric sensor model. The para-

metric sensor model is selected to capture non-idealities in the real sensor. We evaluate

the sensor model by comparing not only raw predictions (Section 3.5.1), but also overall
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performance of applications in simulation versus reality (Section 3.5.2). Our parametric

approach outperforms the baseline simulator, but it is specific to the Neato Lidar sensor.

Observation distributions approximated by parametric models are limited in their ex-

pressiveness, and may require careful design to suit an application. However, sensors

can behave noisily in commonplace situations, such as a compass on a mobile robot

whose readings are affected by motor current. Instead of a search for the right paramet-

ric family for each new situation encountered, a principled and simple nonparametric

approach to modeling and predicting distributions from data can be of wide benefit

to robotics. In Section 3.4.2.2, we propose nonparametric distribution regression as a

procedure to model sensors. It is a data-driven procedure to predict distributions that

makes few assumptions on the data source. We apply the procedure to model raw dis-

tributions from real sensors (Section 3.5.3), and also demonstrate its utility to a mobile

robot state estimation task (Section 3.5.2). We show that nonparametric distribution

regression adapts to characteristics in the training data, leading to realistic predictions.

The same procedure competes favorably with baseline parametric models across appli-

cations. The results also help develop intuition for different sensor modeling situations.

Our procedure is useful when distributions are inherently noisy, and sufficient data is

available.

This chapter contains work from the following publications.

Tallavajhula, Abhijeet, and Alonzo Kelly. ”Construction and validation of a high fidelity

simulator for a planar range sensor.” ICRA 2015.

Tallavajhula, Abhijeet, Barnabs Pczos, and Alonzo Kelly. ”Nonparametric distribution

regression applied to sensor modeling.” IROS 2016.
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3.2 Related work

Existing open-source simulators are not well-suited for real-world sensor modeling. The

Lidar model in Gazebo [10] is simplistic, consisting of random Gaussian noise added to

the output from ray-tracing. The noise parameters are uniform and apply to all rays.

The Lidar model in Blensor [12] is more fine-grained, with adjustable noise parameters

for individual rays. However, even in the case of available parameters, there is no

procedure provided as to what the noise settings must be, or how to determine them.

A sensor model requires an associated training procedure.

Since our work is about acquiring a sensor model and using it for simulation, an associ-

ated field is calibration. Sensor calibration is a classic problem that has been repeatedly

studied [32], [16]. Calibration is often stated as characterizing the error in a model.

Starting with some representation of the error, the sensor is placed in a carefully con-

trolled environment where precise and accurate measurements can be taken. Residuals

are calculated from the difference between the true and the expected readings, and the

error model is fit to the residuals. Given identified errors, simulating is simple: clean

data is generated to which noise is added, which is what is done in the simulators [10, 12].

In contrast, we make no distinction between a model and noise. We choose parameters

to directly represent the entire sensor distribution. We then use data-driven methods to

learn how these parameters vary with state.

One way to characterize approaches to modeling for simulation is based on the assumed

knowledge of state. In a controlled calibration environment, state may exactly be known.

Results from calibration can then be used to predict sensor output at any state within

experiment limits. [18] solves the problem of Lidar simulation in a different setting:

training data is in the form of Lidar scans taken outdoors, with no map, but accurate

pose information is available via a high-quality inertial navigation system (INS). The

focus is on modeling the environment, which is represented by a combination of fit planes

and permeable ellipsoids. Realistic simulation in the vicinity of training poses is pos-

sible, but this solution does not generalize across environments. Our work, conducted

and applicable indoors, considers the case that both the map and sensor pose are known

nominally, within reasonable error. We incur a loss in prediction power, but gain sig-

nificant ease in data collection. This approach was motivated by the observation that

while exact localization is difficult, current localization algorithms result in fairly good

state estimates.

In sensor modeling, there are broadly two problems to be considered. The first is the

problem of modeling distributions, given samples. There is a long history of paramet-

ric modeling, which approximates the observation distributions with a parametric one.
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While these methods may be sufficient when the approximations are good, they are lim-

ited in their expressiveness. Dealing with complex distributions involves incorporating

more parameters, and increasingly elaborate models. For example, [33] presents results

of detailed parametric modeling for sonar sensors. The second problem is to predict ob-

servation distributions. Data, such as logged states and observations, will be available

only at certain states, from which we may want to predict a distribution at an unseen

state. With the parametric models, the approach is to allow the parameters to depend

on state. Sensor models for range sensors, for example, vary in complexity from the

simple raycast model in [29], to a Bayesian network model developed in [34].

The majority of sensor models are parametric. For example, [35] proposes a model for

small sonar sensors. [16] characterizes a parametric model for ladar devices. Other work

fits a parametric model to sensor readings, but estimates parameters at new states using

nonparametric methods. [36] considered Gaussian distributions as observation models,

but estimated parameters using Gaussian processes. Similarly, [37] used Gaussian pro-

cess regression to predict models for multiple beams of a range sensor. [38] regressed

covariances of a Gaussian distribution using nonparametric kernel smoothing. In con-

trast, we take a finer-grained approach to sensor modeling, performing even density

estimation in a nonparametric manner.

There has been recent work in machine learning which extends the standard case of real-

to-real regression to distribution-to-real regression [39], distribution-to-distribution re-

gression [40], and other variants. Importantly, these procedures are nonparametric. The

case that is relevant to sensor modeling is real-to-distribution regression, or regressing

from state to observation distributions. We will henceforth refer to real-to-distribution

regression as simply distribution regression. Nonparametric distribution regression is

conceptually simple, consisting of two steps that can be abstracted as density estima-

tion, followed by regression. Nonparametric density estimation allows us to deal with

complex distributions. Nonparametric regression allows us to deal with complex func-

tions of state.

Validation of simulators is a topic that receives little attention. The experimental results

in [12] are comparisons between simulators, not a comparison of simulation with reality.

[41] introduces a synthetic benchmark for the evaluation of vision algorithm that use

RGB-D data. Algorithms are compared on clean and noisy simulations, but there are

no results showing how this correlates with real performance. Part of the reason is the

difficulty in recreating environments in simulation. In [18] extensive validation of lidar

simulators is performed. Quantitative measures for comparing lidar readings are defined

and computed for simulated versus real readings over a number of runs.
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3.3 Statistics background

Our approach to sensor modeling is data-driven. It builds on concepts in statistics,

which we review in this section. Some of the notation used is local to this section.

Further details on these topics may be found in the references [9, 42].

3.3.1 Density estimation

Density estimation is the problem of estimating the density p(X = x) of a random

variable X ∈ Rd, given independent and identically distributed (i.i.d) samples {Xi}, i =

1 : n drawn from p(X). Let the estimate be p̂(x). The objective is to minimize the risk,

which can be taken as the expected L2 loss, E(
∫

(p(x)− p̂(x))2).

In parametric density estimation, the density is assumed to depend on parameters β,

expressed as p̂(x, β). The task is to estimate the parameters β. In nonparametric density

estimation, it is not assumed that the density has a specific functional form. An example

is kernel density estimation. For a scalar input, an example kernel is the Gaussian kernel,

K(x) =
1√
2π

exp

(
−x

2

2

)
, x ∈ R. (3.1)

A scalar kernel with a bandwidth δ is defined as Kδ(x) = 1
δK(x/δ). A kernel in higher

dimensions can be defined in terms of a scalar kernel. We use a positive definite band-

width matrix, ∆,

K∆(x) = |∆|−
1
2K
(

∆−
1
2 ||x||

)
, x ∈ Rd.

The bandwidth is a hyperparameter, which must be tuned for optimal performance. In

practice, it can be selected on training data using cross-validation. Or it may be selected

on a separate validation dataset. Once a bandwidth is selected, the error of the estimator

is calculated on a test dataset. The hyperparameters are not tuned on the test dataset,

because then the test error will no longer be unbiased. Other nonparametric density

estimators are histograms, and orthogonal series estimators. Theoretical guarantees for

nonparametric density estimation are well-understood. Consider the Hölder class of

functions Σ(k, L). For integer k, functions in this class have their k − 1th derivative

Lipschitz continuous, with constant L. The Hölder class is a way of imposing regularity

conditions on the unknown density. For densities in Σ(k, L), the error goes to zero at

rate n−
2k

2k+d . This is also known to be the minimax error rate.
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3.3.2 Regression

Regression is the problem of predicting an output Y given input X. Typically the output

is a scalar, Y ∈ R, while the input may be a vector X ∈ Rd. The joint distribution

P (X,Y ) is unknown, but we have a dataset D = {(Xi, Yi)}, i = 1 : n of i.i.d samples

from the unknown distribution. Our predictor is f(X), which depends on the dataset.

The objective is to minimize the expected squared error, E(Y −f(X))2. The expectation

is over (X,Y ) as well as the data which is used to select the predictor f(X). Consider the

squared error conditioned on the input, E[(Y − f(X))2|X = x]. A useful decomposition

is as follows

E[(Y − f(X))2|X = x] = E[(Y − E(Y |x) + E(Y |x)− f(X))2|x]

= E[(Y − E(Y |x))2|x] + E[(E(Y |x)− f(x))2]

= σ2 + (E(Y |x)− Ef(x))2 + E(Ef(x)− f(x))2.

Above, σ2 is the variance of the output Y from its mean E(Y |x) at x, and is not in our

control. From the second line, it is seen that the optimal prediction is f(x) = E(Y |x).

Therefore, regression can be seen as an approximation of the conditional mean of the

output given the input. The term (E(Y |x) − Ef(x))2 represents the predictor bias.

The term E(Ef(x) − f(x))2 represents the variance of the predictor. Typically we will

pick from a class of predictors. Choosing a larger class may reduce bias, since it may

approximate the true conditional mean better. But it may increase the variance, due to

the fact that we are learning from finite samples. Variance is controlled by techniques

such as regularization. This observation is often referred to as the bias-variance tradeoff.

The class of predictors may be parametric. For example, the class of linear predictors,

f(x) = wTx. By contrast, in nonparametric regression, a fixed functional form is not

assumed for f(x). An example is kernel smoothing,

f(x) =

∑n
i=1K∆(||x−Xi||)Yi∑n
i=1K∆(||x−Xi||)

,

which is similar to kernel density estimation. A combination of a linear predictor and

kernel smoothing is the local linear predictor, in which weights w are chosen to minimize

the error

n∑
i=1

K∆(||x−Xi||)(Yi − wTXi)
2. (3.2)

In contrast to a parametric linear predictor, the weights w(x) depend on the query input.

Similar higher-order local polynomial fits are possible. They may help reduce bias, at
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the cost of increasing variance. Other nonparametric regression methods include RKHS

regression, and Gaussian process regression. Nonparametric regressors may have their

own hyperparameters θ, such as regularization weights. These can be selected using

cross-validation, or separate validation data. The theoretical guarantee is similar to

density estimation. For functions in the Hölder class Σ(k, L), a nonparametric regression

method such as kernel smoothing has error rate n−
2k

2k+1 .

3.3.3 Distribution regression

This review in this section is based on the reference [40]. Standard regression considers

both inputs and outputs to be real vectors. Distribution regression extends the setting

to allow both inputs and outputs to be distributions themselves. Instead of a function, a

functional f must be regressed. Denote the input distribution by P ∈ P, and the output

distribution by Q ∈ Q. The input-output distribution samples are {Pi, Qi}, i = 1 : n. In

standard regression, the samples are observed. In this case, the distribution samples are

not observed. Rather, data sampled from these distributions are. The available data

is the set of pairs {(SXi , SYi )}, i = 1 : n, where SXi = {Xij}, j = 1 : mX , and Xij are

i.i.d samples from Pi. Similarly, SYi = {Yij}, j = 1 : mY , and Yij are i.i.d samples from

Qi. The number of samples from each input or output distribution, mX and mY , are

allowed to depend on index i.

The first step in distribution regression is to estimate the input and output densities,

{(p̂i, q̂i)}. This step uses the techniques from Section 3.3.1. A functional from inputs to

outputs is then regressed. This step adapts function regression techniques from Section

3.3.2. A number of nonparametric function regressors, including kernel smoothing, can

be interpreted as linear smoothers. The prediction of a linear smoother at a query input

is a weighted sum of the outputs in the training data. The weights themselves are a

function of the input. Similarly, a functional regressor can be considered which has the

form

f(p) =
n∑
i=1

W (p, pi)qi,

where W denotes the weights. In implementation, the estimated densities p̂, p̂i, q̂i will be

input to the regressor. The theoretical analysis in [40] is carried out for orthogonal series

estimation of the output densities. If the input distribution space is a doubling dimen-

sion, it is proved that the rate of convergence of the risk is polynomial in n,mX ,mY .
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3.4 Approach

3.4.1 Real and simulated scenes

0 5 10
x (m)
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Figure 3.3: Objects made of line segments can represent a number of indoor scenes.
The image on the right is the plan of a real corridor.

We consider planar scenes with objects that consist of line segments. The objects in-

clude piecewise-smooth lines, and closed polygons. One reason for this choice is the

kind of scenes used in the MRPL course. In the course, scenes are constructed using

straight segments (made of wood) of known length. A number of desired objects and

environments can be constructed using the segments, such as

• walls with corners, and straight corridors. Such environments make it simple to

specify a map to localize against.

• Obstacles, which robots must avoid.

• Targets, which robots must track and drive up to.

• Mazes, which robots must use path planning and search to get out of.

Line segments are also an accurate representation of indoor environments. For example,

corridors, for which floorplans may be available. Some environments are depicted in

Figure 3.3. Sensor modeling is simpler in such a scene compared to one represented

by occupancy map. Further, a description of a scene in terms of line segments can be

extracted from range data, as reviewed in [43, 44].

In symbols, a scene, denoted by S, is a set of objects, S = {ok}. An object o =

(M, qobject) consists of an object model M , and the object pose, qobject. The object

model M may be taken to be the x and y coordinates of the endpoints of the line

segments. The coordinates are specified in any coordinate system whose origin is fixed

to the object. Our object model includes only geometry, and not variables such as

reflectivity. In practice this simplification was enabled by constructing real scenes with

the same material. The coordinates of the object model are specified in the identity

frame. The object is transformed to the world frame via the object pose, qobject. The



Chapter 3. Indoor planar Lidar simulation 35

real state x = (S, qsensor) consists of the scene along with the pose of the sensor. All

poses in planar scenes are in SE(2).

Due to the simplicity of the real scenes, they can be specified exactly in simulation.

This means that the real and simulated scenes spaces are identical, or X̂ = X . We

know object models {Mk} since they were constructed using planks of known lengths.

We conducted experiments in an indoor lab space, where it was also simple to measure

the pose of the objects {qobject,k}. We localized the robot using either an optimized

registration algorithm, or using a motion capture system. The registration itself was

validated using the motion capture. Since both the real scene and sensor pose were

known, we could reconstruct the real state exactly, or x̂ = x. In the rest of this chapter,

we only refer to the real state x.

An interesting question is: can a useful sensor model be constructed when there is noise in

the state information? Suppose that true state in the data is unknown and only estimates

{x′i} were available. For example, we may only have a nominal map and the approximate

sensor pose. Under such uncertainty, an Expectation-Maximization (EM) approach

comes to mind. For example, consider a sensor mounted on a robot for which we had the

control and observation history {ui, zi}. We could try to frame the simulator parameters

β as the maximizing parameters and states {x′i} as the hidden variables. Given a sensor

model with parameters β, the E-step would involve state estimation (which makes use

of the sensor model). Given the distributions over state at each timestep, the M-step

would be to optimize the sensor model, as β = arg maxβ′ P ({zi}|{xi}, β′). However,

we are interested in simulator parameters that vary with state. We do not assume a

functional form for β(x), but use nonparametric regression. In this case, states are part

of the data points that define the learned model. They can no longer be considered

hidden variables, violating the conditions of the EM algorithm.

There may be further concerns that we equate x and x̂, as the real state may not be

exactly known in simulation. We primarily use the simulated state information to train

regressors, so we address these concerns by appealing to results in statistics. The general

problem of regression in the presence of measurement error has been studied in the

literature on error in variables. Nonparametric prediction with input noise is in general

a hard problem. Advanced methods [45, 46] allow input errors to be drawn from arbitrary

distributions and construct unbiased estimators when multiple noisy observations of the

same input are available. The resulting procedure is computationally intensive, however.

A single prediction involves evaluating an integral as part of an inverse Fourier transform,

a laborious task for a range simulator which needs to make hundreds of prediction at each

state. Instead, we rely on ideas from regression calibration [47], a procedure in which

the true state x is replaced by the noisy state x′ and standard regression is performed.
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This simple procedure is most useful when errors are small, a characteristic we use to

our advantage. Observing that localizing state within 1cm takes reasonable effort, but

doing so within 1mm takes much more, this procedure of working with approximate

state relieves some of the burden of model-building. It is important to keep in mind

the framework of the procedure. Regression calibration requires that predictions are

made on inputs observed with the same error as the training inputs. Strictly then, the

range simulator does not estimate p(z|x), but p(z|x′). For a range sensor, approximate

state knowledge during training implies that bias in the readings and pose errors are

interrelated. A bias predicted in range could be partly due to error in the training pose.

3.4.2 Sensor modeling

x1 x

xi

h(z|x)

xi ~ p(x)
(zi1,...ziM) ~ p(z|xi)

h(z|xi)

h(z|x1)

z

z

z

?

Figure 3.4: The problem of sensor modeling. Given data in the form of states and
observations at those states, we want to model the observation distribution at unseen

states.

Given our choice of indoor scenes, the problem of building a simulator reduces to that

of sensor modeling. Standard regression would predict an observation ẑ at a state

x. Since sensors are noisy, this is not very useful. Instead, we estimate the true dis-

tribution of observations p(z|x) by p̂(z|x). Since we estimate a distribution, sensor

modeling is a special case of distribution regression:one in which the inputs are real

vectors, but the outputs are distributions. We assume that datasets are of the form

D = {(xi, zij)}, i = 1: N, j = 1: M . States are i.i.d samples drawn from a state distri-

bution p(x). The test distribution is assumed to be the same as the training distribution:
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a standard assumption made by most learning procedures. Intuitively it means that we

will encounter states similar to those trained on. Observations are i.i.d samples from

the observation distribution at that state, zij ∼ p(z|xi). It is not necessary that the

same number of observations are logged at each state xi. We take them all to be M for

simplicity. Multiple observations at each state are required for good density estimates.

This form of dataset is easy to collect in a number of cases, including our planar indoor

Lidar sensor. With the sensor mounted on a mobile robot, as in Figure 3.10, the robot

drives to a new pose, logs sensor data, and repeats the process.

nominal range
angle of incidence

features

1

2

360

3

1 deg

Figure 3.5: The laser has 360 bearings. They are spaced at 1 deg (not drawn to scale).
We model each independently. Features used for regression are the nominal range and

angle of incidence to an obstacle.

The Lidar sensor we work with has 360 range returns. Their bearings are equally spaced

in [0, 2π). For regression, we do not use the state x directly, but instead work with

features ψ(x) computed from the state. For a query ray in a scene, we use the nominal

range, and angle of incidence to the target as features, ψ = (r, δ). This is depicted in

Figure 3.5. We continue to write the sensor model as p̂(z|x), while understanding that

the dependence is more accurately represented as p̂(z|ψ(x)).

3.4.2.1 Parametric method

In this approach, the estimated distribution belongs to a parametric family, p̂(z|x) =

p̂(z|x, β). The βi compress the information in the observations {zij}. Given training data

D, parametric distribution regression involves two steps. First, parameters are estimated

from the observations, resulting in a reduced dataset Dβ = {(xi, β̂i)}, i = 1: N . At a

query state x, we predict the distribution by estimating β̂ via regression with Dβ, and

constructing the distribution. The approach is summarized in Procedure 1. Note that

the parametric only refers to the output distributions. The regressor to predict β itself

can be non-parametric.

A parametric model was selected to capture the non-idealities we came across when

working with the sensor. A coin is flipped, and with probability Pnull, the sensor returns

a null reading. With probability 1− Pnull, a range reading is sampled from a Gaussian

N (µ, σ). Given samples {zj}, j = 1 : M , we use the maximum likelihood estimators for
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Figure 3.6: Illustration of the two regression procedures. In P-Reg, parameters βi
are estimated for the training data. At a new state x, β is estimated via regression. In
NP-Reg, distributions are estimated nonparametrically. At a new state x, each p̂(zb|x)

is predicted independently via regression.

Procedure 1: P-Reg
Input : Query x, Dataset D = {(xi, zij)}
Output : Predicted distribution p̂(z|x)

1 β̂i ← EstimateParameters({zij})
2 Dβ ← {(xi, βi)}
3 β̂ ← Regress(x,Dβ)

4 p̂(z|x)← p̂(z|x, β̂)

EstimateParameters

P̂null =
num null readings

M
,

µ̂ =
1

M

M∑
j=1

zj ,

σ̂ =
1

M

M∑
j=1

(zj − µ̂)2.

The resulting sensor model requires the prediction of three parameters, β = (Pnull, µ, σ).

As discussed in Section 3.2, we do not explicitly model an error in the signal. The

systematic bias, for example, will be contained in the trend of the mean, µ. We used local

linear smoothing (Equation 3.2) with a Gaussian kernel for Regress. Each component

of β was regressed independently. At a query feature ψ, the prediction is wTψ, where

the weights w are given by

w = (ΨTWΨ)−1(ΨTWY ),
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Procedure 2: NP-Reg
Input : Query x, Dataset D = {(xi, zij)}
Output : Predicted distribution p̂(z|x)

1 p̂(z|xi)← EstimateDensity({zij})
2 Dz ← {(xi, p̂(z|xi))}
3 p̂(z|x)← Regress(x,Dz)

where Ψ ∈ RN×dim(ψ) is a matrix where each row is a feature vector from the training

dataset. The weight matrix W ∈ RN×N is a diagonal matrix, with entries

Wii =
K∆(‖ψ − ψi‖)∑N
j=1K∆(‖ψ − ψj‖)

.

The vector Y ∈ RN×1 is (Pnull,i), (µ̂i), or (σ̂i), depending on which sensor model pa-

rameter is being regressed. We modeled the each of the 360 bearings in an observation

z = zk, independently. The hyperparameters of the model were the bandwidths in the

local linear smoothers. We used bandwidths common to each Lidar bearing, but differ-

ent across the parameters being estimated. These were tuned to minimize error on a

validation dataset. Note that the simulator parameters θ in this case were the hyper-

parameters of Regress. The parameters β were not related to θ; they were estimated,

and used to model the observation distribution.

3.4.2.2 Nonparametric method

We now discuss the nonparametric approach to sensor modeling. Given training data

D = {(xi, zij)}, it involves two familiar steps. First, since we only have samples {zij}
from p(z|xi), we construct nonparametric density estimates p̂(z|xi). This results in

datasets Dz = {xi, p̂(z|xi)}, i = 1: N . At a query state x, we predict the distribution by

regressing at each z with Dz. We call this nonparametric regression procedure NP-Reg,

and it is summarized in Procedure 2. Note that, for both P-Reg and NP-Reg, p̂(z|x)

has to be computed for each z of interest, although we have suppressed this in the input

to the procedures. If we are performing state estimation, p̂(z|x) only at the observation

currently being processed is of interest. If we are performing simulation, we need p̂(z|x)

over the domain of z in order to draw samples.
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For EstimateDensity, we implemented kernel density estimation. Let Kz denote the

observation kernel, and δz the observation kernel bandwidth, then

p̂(z|xi) =
1

M

M∑
j=1

Kz,δz(||z − zij ||), (3.3a)

Kz,δz(||z − zij ||) =
1

δz
Kz

(
||z − zij ||

δz

)
. (3.3b)

Sensor observations in our case take values from a discrete set, z ∈ {z1 : zB}. In such

cases, we integrate the distribution to obtain the observation probabilities, and construct

a histogram h(x) ∈ RB. The histogram has B bins, and stores probability values in

each bin, hb(x) = P (zb|x), b = 1: B. Instead of kernel density estimates integrated to

histograms, we directly use histogram estimates when we want to speed up predictions.

With I denoting the indicator function, the histogram probability estimate in bin b is

given by

ĥb(xi) =
1

M

M∑
j=1

I(zij = zb), b = 1: B. (3.4)

For Regress, we use kernel smoothing. Let Kx denote the state kernel, and ∆x the

state kernel bandwidth. ∆x ∈ Rp×p is a matrix, where p is the state dimension.

p̂(z|x) =

∑N
i=1 p̂(z|xi)Kx,∆x(||x− xi||)∑N

i=1Kx,∆x(||x− xi||)
(3.5a)

Kx,∆x(||x− xi||) = |∆x|−
1
2Kx

(
∆
− 1

2
x ||x− xi||

)
(3.5b)

The kernel bandwidths δz and ∆x are the hyperparameters of the procedures. They

were selected to minimize the empirical risk R̂ on validation data. The observation

kernel bandwidth δz is a scalar, but the state kernel bandwidth ∆x is a matrix. It is

common to choose a scaled identity matrix, ∆x = δxIp, where Ip is the p × p identity

matrix. But not all dimensions of state have the same scale. To balance computational

overhead with expressiveness, we use a diagonal matrix, ∆x = diag(δx1 . . . δxp). The

hyperparameters are selected using a grid search. We found that the choice of kernel

was not crucial. Using a different kernel, such as the boxcar kernel, only led to different

bandwidth values.

Other choices exist for the component procedures, such as series estimation [48] for

EstimateDensity, and Gaussian processes [49] for Regress. With our choices, pre-

diction using NP-Reg is efficient. Let H ∈ RB×N denote the matrix of estimated

histogram values, where Hbi = ĥb(xi). Suppose there are Q query states, {x1 : xQ}.
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Figure 3.7: With histogram estimation and kernel smoothing, prediction is an efficient
matrix product.

Let W ∈ RN×Q denote the matrix of weights derived from the state kernel, where

Wiq = Kx,∆x(||xq −xi||)/(
∑N

i=1Kx,∆x(||xq −xi||)). Then the B×Q matrix of predicted

histograms at the query states is HW (Figure 3.7). Note that the histograms from

the training data are linearly smoothed to make a prediction at a query state. This

is a recurring feature of nonparametric methods. With a histogram density estimator,

N = 103 training states, M = 100 observations and Q = 200 query states, prediction

takes about 0.5s when implemented in MATLAB. Histogram estimation is independent

across training data, and linear smoothing is independent across queries.

NP-Reg is obviously useful when p(z|x) is inherently noisy. We use ‘noisy’ in an informal

sense, to mean that the observation distribution is hard to approximate parametrically.

We point out another case. Let us expand the state to (x, y). The part y of state

is unmodeled. If the information y were available, it may be possible to build a good

parametric model p̂(z|x, y) of the true distribution p(z|x, y). But our model is p̂(z|x),

and the effect of the unmodeled states on this distribution is increased apparent noise.

Instead of modeling the effect of unmodeled states in the observation model, an alternate

approach is to directly model y. The choice depends on the application. Consider the

operation of a range sensor. Let the unmodeled states y be dynamic objects in the en-

vironment, which are not explicitly represented. Careful calibration and reasoning may

result in a satisfactory parametric model p(z|x, y). In a sense, physics-based methods

refine models by reasoning about y. Enumerating models for a few materials is easy,

but if there are a large number of material types in the environment, it is difficult to
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obtain information about all. If the distribution p(z|x) is noisy, it is suited for nonpara-

metric treatment. Limiting the size of x may also be desirable in applications such as

simulation. An important point is that the distribution of the unmodeled states p(y)

must be the same during training and test. The predicted observation model p̂(z|x)

will represent observations due to different materials in a statistically, if not physically,

realistic manner.

x x'
z

p(z|x)

z

p(z|x')

Figure 3.8: Illustration of when sensor modeling is fundamentally difficult. Observa-
tion distributions vary widely for small changes in pose. p(z|x) is not only noisy but

also non-smooth in state.

Finally, there are situations in which sensor modeling is fundamentally hard. This is

because both the parametric and nonparametric procedures rely on a Regress step.

Regression is hard when there is little smoothness of outputs in the inputs. Consider a

range sensor again, operating outdoors, pointed at a patch of grass (Figure 3.8). The

state x is just the pose of the sensor. p(z|x) may be hard to model parametrically at

any state, because of effects such as pass-throughs (e.g. when lidar randomly senses

the range to foreground or background surfaces). Nonparametric methods can model

distributions at any two states x and x′. However, between x and x′, the distributions

themselves may vary in a non-smooth manner, because blades of grass are spatially

discontinuous.

3.4.3 Simulator evaluation

We only discuss the observation-level loss here. Details of the application for the

application-level loss are can be found in the experiment sections. There are a num-

ber of methods to evaluate observation models (see [18] for a discussion), such as the

likelihood of observations. We use the formal concept of risk from learning theory [9]. For

the parametric approach, the loss is the squared error between β̂ and β. The empirical

risk is the mean of the loss over a dataset.

For the nonparametric approach, we need to specify the histogram metric used to com-

pute the loss l of prediction. The Euclidean norm l(h, ĥ) =
∑B

b=1(hb− ĥb)2 is not a good

choice. It favors placing probability mass in the same bins, which may be low even with

placing mass arbitrarily in other bins. This point is illustrated in Figure 3.9. Instead

we use the histogram match, l(h, ĥ) =
∑B

b=1 |
∑b

c=1 h
c −

∑b
c=1 ĥ

c|. It is the L1 norm
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of the cumulative sums, and takes into account the position and distribution of prob-

ability mass. The component algorithms in Procedures 1 and 2 (EstimateDensity

etc.) will have free parameters, which are hyperparameters. During training, these

hyperparameters were selected to minimize empirical risk.

x

x
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P
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2

3 1
3

1
2

x

F

x

F

Figure 3.9: The plots on the left are the histograms. Plots on the left show corre-
sponding cdfs. Under the Euclidean metric, histogram 1 matches 3 more closely than

2. Under the histogram match metric, histogram 1 matches 2 more closely than 3.
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Figure 3.10: A Neato in the data collection environment

Field Value

Frequency 5 Hz

Number of bearings 360

[Min range, Max range] [0, 4.5] m

Resolution 0.001 m

Number of histogram bins B 4501

Table 3.1: Sensor properties

3.5 Experiments

3.5.1 Observation-level simulator evaluation

The maximum range, resolution, and other details are listed in Table 3.1. Datasets

for learning were collected by driving the robot around inside a known map, shown in

Figure 3.10. The environment was static during data logging. The number N of sensor

poses in the training, validation and test datasets was 100, 30, and 30, respectively. We

chose the number of observations M to be logged at each state based on the histogram

loss metric (Section 3.4.3). A large number of observations, 250, were collected at a

representative state. The resulting histogram, say ĥ250, was treated as ground truth.

We then computed the estimated histogram, ĥM , and the loss l(ĥ250, ĥM ). As expected,

the loss decreases with increasing M . For data logging, we then picked the M at which

the loss fell below a threshold (0.5). The value picked was M = 70. See Figure 3.14a.
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Parameter P-Reg error Physics-based model error

µ 0.015 m 0.018 m

σ 0.001 m 0.002 m

Pnull 0.0076 −

Table 3.2: Sensor model parameter prediction error

For comparison of our data-driven procedure with a physics-based sensor model, we use

the following formula for the variance, derived in [50] and used in [16, 51],

σ2 = K
r2

cos δ
. (3.6)

The proportionality constant K = 1e − 3 was determined from a grid search on the

training data. Predicted error in the sensor model parameters for the physics-based

approach and our data-driven parametric approach (Section 3.4.2.1) are in Table 3.2.

Example real data, and corresponding simulated data, is depicted in Figure 3.12. The

advantage to learning parameters for each bearing is that systematic biases can be

reproduced. Certain bearings consistently record null readings, another behavior that is

well-learned. The non-null readings seem geometric in nature, while the null readings are

likely caused by physical obstructions to some bearings. Regression surfaces for P-Reg

are shown in Figure 3.11.

Figure 3.11: Regressed functions for µ, σ, and Pnull.
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Figure 3.12: Real and simulated scans.

Empirical risk versus test size for the nonparametric and parametric methods are shown

in Figure 3.14b. Sample histogram predictions are shown in Figure 3.13. NP-Reg

makes noisy predictions, which is appropriate since the true histogram is also noisy at
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Figure 3.13: Example histogram predictions.

a similar scale. P-Reg makes smooth predictions because of the Gaussian parametriza-

tion. Overall however, P-Reg performs better in terms of risk. This result illustrates an

important point. The main advantage of NP-Reg over P-Reg is the increased expres-

siveness. Parametric assumptions are not made during modeling, and the theory justifies

regression at the level of distributions. This gain comes at a price, as nonparametric

procedures generally require more training data. This case supports the intuition that

a parametric model is preferable when it is a good approximation. Because we made a

careful choice of the sensor model parameters, P-Reg requires less data to learn. The

risk is low to begin with. NP-Reg starts at high risk, and converges slower. It will even-

tually achieve low risk with more data, but the increased expressiveness is unnecessary.

Another reason for P-Reg’s better performance is the bearing-specific regression. For

NP-Reg, there was not enough data for bearing-specific regression, and so we pooled

together data from all bearings. This is visible in that, while the histogram predicted

by NP-Reg is similar in shape to the real histogram, it is slightly shifted along the

horizontal axis, accounting for the error.
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(a) Loss l(h, ĥ) versus observations M .
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(b) Empirical risk R̂ versus number of states N .

Figure 3.14

3.5.2 Application-level simulator evaluation

We present the utility of the sensor models for developing applications in this subsection.

Detection

For this application we used the parametric sensor model optimized on training data

from Section 3.5.1. As a baseline Lidar simulator, we used the physics-based sensor

model (Equation 3.6).

For the detection application, we considered a setup in which the scene of objects S con-

sisted of an object representing boundary walls, owalls, targets {otarget,j}, and obstacles

{oobstacle,j}. The boundary walls were in the shape of a rectangle. The sensor was at

the center of the rectangle, and pointing in the direction of the x−axis. The targets and

obstacles were straight lines. All targets were lines of the same length (0.61 m), while

obstacles were of different lengths. The application task was to detect all the targets in

the scene. The task was representative of finding simple features in range scans. Since

the robots we used functioned as forktrucks, the targets detected represented objects to

be picked up, while avoiding obstacles. We generated a set of scenes {Si}, i = 1 : N

as follows. In simulation, we generated a large number (106) of candidate scenes by

sampling from a distribution of scenes. From these, we selected N = 50 diverse scenes,

using non-maximal suppression. We set these scenes up in reality, and logged observa-

tions to obtain the real dataset, D = {xi, zi}. The sensor pose qsensor,i was the same at

all scenes. A simulated dataset D̂ = {xi, ẑi} was generated using the Lidar simulator.

We generated simulated datasets both for our approach, and the baseline.
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Figure 3.15: Top, sample scenes in the detection dataset. Below, sample scans in the
detection dataset. The target is the green line. The black arrow shows the robot pose.

We are particularly interested in how simulators compare to reality for naive algorithms

than high quality ones. We want the simulator to rapidly guide developers towards

algorithms that will work well on the hardware with less (or no) changes. The detection

algorithm A was a line-finding algorithm that starts at a point and grows a line in

either direction. The algorithm parameters α included the maximum inlier distance of

a point to a line, and the minimum number of points in a candidate line. The algorithm

objective J(α,D) was the negative of the F1 score. The F1 score is a standard metric

for detection tasks, and is defined in terms of the precision and recall. These quantities

are calculated over a dataset as

precision =
# true positives detected

# positives detected
, recall =

# true positives detected

# positives in the dataset
,

F1 =
2 precision× recall

precision + recall
, J = −F1.

We computed the application-level loss for two algorithm parameters, shown in Figure

3.16. The loss for our simulator is uniformly lower than that of the baseline. We can

quantitatively make the claim that our simulator is better for developing the detection

algorithm than the baseline.

We also wanted an insight into specific ways in which our simulator is better for ap-

plication development. For this purpose, we performed another, qualitative evaluation.

We compared application development trajectories in simulation and in reality, as was
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Figure 3.16: Application-level simulator loss is uniformly lower for our approach.
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Figure 3.17: Comparing development paths between reality and simulation, for the
baseline and our approach. Plots in red are for simulated data, while plots in blue are

for real data.
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also described in Section 2.3.3. A start configuration, α0, of the detection algorithm was

chosen with all checks for false positives disabled. This was meant to mimic a first im-

plementation. We then tuned parameters based on the following strategy: first increase

recall, and then increase precision (at some cost to recall). At any stage, the performance

of the algorithm is a point in the precision-recall curve. With continuing development,

the algorithm can be imagined to trace out a trajectory in the precision-recall space.

This trajectory can be plotted for simulated and real datasets and is a visual aid. Figure

3.17 shows these trajectories for an algorithm developed on the baseline simulator. As

is evident, performance on the baseline is overly optimistic. We repeated the exercise

by performing development on our learned simulator. The trajectories are plotted in

Figure 3.17. Although it starts at the same point, the trajectory on real data (the blue

curve) is different in either case, because algorithm development proceeds differently.

For example, preprocessing the range data before detection was a crucial step for higher

recall, a step suggested by the learned simulator but not by the baseline. Similarly,

tolerance parameters for outlier rejection chosen on the baseline were too aggressive on

the learned simulator.

The application development paths resulted from a specific choice of a strategy. For

detecting lines in range scans, we of course know how to construct a robust algorithm.

The point of this exercise is that we can expect the learned simulator to be equally

valuable on problems for which the developer is less skilled, or for which less is understood

about the nature of a good solution. The benefit of our simulator over the baseline is

quantitatively demonstrated for other algorithm parameters in Figure 3.16.

Registration-based localization

For this application we used the parametric sensor model optimized on training data.

The baseline simulator is the same as that described in Section 3.5.2.

For the registration application, we considered a setup in which the scene S consisted of

a L-shaped corridor. We selected velocity controls that commanded the robot to follow a

non-trivial trajectory {ut}, t = 1 : T for T timesteps. At each timestep, an observation

{zt} is received. An extended Kalman filter (EKF) was used to obtain pose estimates

{q′t}. The motion update of the EKF leaves the pose unchanged, but adds noise to the

pose uncertainty. The noise covariance R for the motion update was experimentally
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Figure 3.18: Range scans in the real and simulated corridors.

calculated to be

R = (V∆t)R1 + (ω∆t)R2,

R1 =


1.8 −0.56 2.2

−0.56 1.2 −1.8

2.2 −1.8 5.9

× 10−4, R2 =


0.62 −0.072 0.038

−0.072 0.79 0.57

0.038 0.57 5.7

× 10−4.

Where V , ω are the linear and angular velocities in the robot’s local coordinate frame.

We chose a form that depended on the robot’s dynamics. The noise is proportional to

the linear and angular displacements. Such a form ensures that there is no contribution

to the noise if there is no displacement in some time interval. The observation update

performs the pose estimation, by registering the Lidar points zt to the map of the

corridor.
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Figure 3.19: Example trajectory estimates from the registration-based filter. Detail
of a section is also shown.



Chapter 3. Indoor planar Lidar simulation 52

A run of the robot and filter results in the trajectory and its estimate, Ξ = {(qt, zt, q′t)}.
For each run, the corridor scene and the control commands {ut} were the same. The

initial position was q0,i was different for each run i. This was accounted for by the initial

position uncertainty, which was determined experimentally to be diag(0.28 0.28 3.4) ·
10−3. The true pose of the robot was obtained using an OptiTrack1 motion capture

setup. This resulted in a real dataset D = {Ξi}, i = 1 : N . We collected data for

N = 20 runs. We then generated a simulated dataset, D̂ = {Ξ̂i}. The true pose is

trivially available in simulation. The same EKF was run in simulation and reality to

generate pose estimates. We generated simulated datasets both for our approach, and

the baseline simulator. Examples of estimated trajectories are in Figure 3.19.

The registration algorithm A worked by running an optimizer to minimize the error

between observations z and the map. Error for a single Lidar point is defined as the

nearest distance to the map. Error for a scan is the sum of errors for the Lidar points.

In our implementation the optimizer was gradient descent. The optimization variables

were the robot pose, and gradients were calculated numerically. The output of the reg-

istration algorithm was used in the observation update of the EKF. There are a number

of parameters in the error computation. However, for tuning real-time localization, we

picked the algorithm parameters α to be the number of optimization iterations. Each

instance of optimization runs for a maximum number of refining iterations. The opti-

mization may converge in fewer iterations. There is a trade-off here: a large number of

refining iterations results in a better pose estimate, but the robot will have moved more

and the estimate gets delayed. The algorithm objective J was the pose estimation error,

averaged over the runs:

error(Ξ) =
1

T

T∑
t=1

‖qt − q′t‖,

J =
1

N

N∑
i=1

error(Ξi).

Plots for the simulation loss l(α) versus α are shown in Figure 3.20. Once again, per-

formance on the learned simulator is a better approximation to real performance, than

performance on the baseline simulator. The application-level risk for our simulator is

0.008 and 0.014 for the baseline. We also calculated the average time for the registration

algorithm A to converge. Plots of the convergence time versus α are shown in Figure

3.20. Time taken by scan matching remains low on the baseline simulator, but increases

on the learned simulator and real data because of increasing refining iterations. Encoder

information arrives at 0.03s on the robot. If the baseline simulator were trusted and the

1https://optitrack.com/

https://optitrack.com/
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refining iterations set to 100, scan matching would take 0.1s on average, and a number

of encoder messages would queue up during the computation in a single thread.
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Figure 3.20: Algorithm performance measures versus the refining iterations of the
scan matching algorithm.

Particle filter-based localization in a dynamic environment

In the observation-level simulator evaluation for the planar Lidar sensor, we saw that

a well-chosen parametric sensor model is better than the nonparametric model. The

nonparametric model performs well when the observation distributions are complex with

unmodeled state, as this application demonstrates.
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Figure 3.21: Snapshots from the operation of a particle filter. The nominal map is
shown in black. Unmodeled objects are not shown. The true trajectory is a blue dotted

path. Particles are shown in green.

Unlike the previous two sections where we compared simulation against reality, in this

section we evaluate sensor models for an application. Our experiments for this section
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were conducted in simulation. The application was particle filter-based localization in

a dynamic environment. The setup was as follows. The scene S consists of a straight,

wide corridor of dimensions 5× 5m. In Figure 3.21, the walls of the corridor is depicted

as solid black lines. The scene also consisted of unmodeled objects {ounmodeled,t}. By

unmodeled, we mean that the map used by the particle filter does not contain the

{ounmodeled,t}. However, they affect any sensor observations logged in the scene. The

unmodeled objects represent dynamic objects, such as moving people, which can occur

in indoor environments. The motion of the unmodeled objects were modeled as random

walks. While the unmodeled objects affect sensor observations, it may be impractical

to track the pose of all such objects. Therefore, one approach to state estimation is to

include the effect of unmodeled objects in the sensor model. The unmodeled objects are

depicted in gray in the top half of Figure 3.21.

We used NP-Reg as a sensor model, and compared it with the sensor model described

in [29]. We refer to the latter as classic raycast model. In the classic raycast model, the

probability density of an observation z at state x is defined as

p(z|x) ∝ η exp

(
−(z − r)2

2σ2

)
+ (1− η) exp(−λr). (3.7)

Where r is the nominal range to a target in the map. The classic raycast sensor model is

thus a mixture of a Gaussian distribution, and an exponential distribution, with mixing

weight η. The Gaussian distribution has standard deviation σ, and represents random

noise around the nominal range. The exponential distribution has rate λ, and represents

observations from dynamic objects. The complete sensor model described in [29] also

contains terms representing null readings, and uniformly distributed readings. Since

these effects were absent in the sensor used in our simulated scenes, we did not include

them in the classic raycast model used as the baseline.

To optimize the sensor models, we obtained training data in simulation as follows. We set

up the corridor with the dynamic objects in simulation, and logged sensor observations.

We obtained data at a total of N = 3660 features. The features used were those

described in Section 3.4.2, the nominal range and angle of incidence to a target. We

simulated M = 50 observations at each feature, and the observations included the effects

of the unmodeled (and dynamic) objects. We simulated 5-10 dynamic objects each, in

the bottom and top half of the corridor. Both sensor models were optimized on the

same training data. For NP-Reg, the hyperparameters were the kernel bandwidths,

as described in Section 3.4.2.2. For the classic raycast model used as baseline, the

parameters were (η, σ, λ) (Equation 3.7).
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Observation model Classic raycast model NP-Reg

Mean pose error (m) 0.004± 0.041 0.002± 0.020

Table 3.3: Filter errors

Having described the sensor model, we describe the particle filter used as the algorithm

A. A particle filter maintains a set of particles and associated weights, {(qi, wi)}, i = 1 :

Np, that are updated in response to sensor readings. When an observation is received,

an observation update is performed. The poses of the particles are unchanged, but the

weights are updated. Weights are proportional to the probability of the observation,

wi ∝ P (z|xi). The observations depend on the state x, which includes the pose of the

sensor and the map, but not the unmodeled objects. Updating the weights is followed

by a resampling step. Further details of the particle filter can be found in [29].

To test the particle filter with either sensor model, we considered a sensor traveling

along an S-shaped path, depicted in Figure 3.21. The path was 4.3m in length, and

52sec in duration. We logged 50 sensor observations along the path. We also logged

the motion control commands (linear and angular velocities) input to the sensor. These

control commands were available to the particle filter. Simulated noise in the motion

was the source of uncertainty in the sensor pose. We initialized the particle filter with

200 particles. These were sampled from a uniform distribution, of radius 1m, and 10deg

around the true initial pose. For the resampling step after the observation update, a

low-variance resampler was used. Since the particle filter is stochastic, we ran the filter

30 times with either sensor model. Errors in estimating position are shown in Table 3.3.

The particle filter run with our sensor model had lower error, and we briefly explored

why this was so. Overall particle filter performance is a non-trivial function of a number

of variables, in addition to the observation model. As a simplification, we focused

on a snapshot of particles, for a single time instant, shown in Figure 3.22, top. The

true robot pose is a red arrow, and a set of particles is shown in green. Of these, we

focused on a single particle, whose pose is also shown in green. This particle’s pose

was close to the true pose, and we would expect it to be assigned a high weight. We

further concentrated on a single reading, at a specific bearing of the range sensor. As

depicted, the observed range (red dotted line) was less than the nominal range (green

dotted line), due to an unmodeled obstacle. The bottom half of Figure 3.22 shows the

predicted distributions. The observation had a low probability under the classic model,

despite the exponential term. On the other hand, the distribution predicted by NP-

Reg had peaks at both the nominal and observed reading. Note that the same data

(consisting of unmodeled objects) was used to train both models. It is possible to reason

about dynamic obstacles in more detail and build a better parametric model, as in [34].

The point of the example is that NP-Reg required no modifications for this specific
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Figure 3.22: Observation probabilities under the different models. Figure 11(a) depicts the
environment. We focus on a specific particle. Figure 11(b) depicts the nominal and observed
range readings. Figure 11(c) depicts the histogram predicted by the classic model. Figure 11(d)

depicts that predicted by NP-Reg.

field value

frequency 100 Hz

number of bearings 1

[min range, max range] [0, 0.2] m

resolution 1e− 4 m

number of histogram bins B 2001

Table 3.4: Sensor properties

situation. Being a nonparametric procedure, it adapts to the training data to predict

realistic distributions.

3.5.3 Magnetic field sensor

To illustrate the flexibility of NP-Reg, we also modeled a magnetic field sensor 2. It

consists of a small probe whose pose is measured when it is placed within a generated

2https://www.ascension-tech.com/products/trakstar-drivebay/trakstar/

https://www.ascension-tech.com/products/trakstar-drivebay/trakstar/
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field generator probe metal forceps

unimodal observation distribution multimodal observation distribution

Figure 3.23: The effect of unmodeled state on the observation distribution. Bringing
a metal object near the sensor affects the field, making the observations noisier and

non-Gaussian.

magnetic field. The small size of the probe makes it suitable for medical applications.

For simplicity, we consider only one axis of operation. Other details are in Table 3.4.

The state x was the coordinate value along the axis, and the observation z is the state

measurement. Data was collected by moving the sensor along the axis. Even within

a workspace of 20 cm, the sensor shows interesting behavior. Referring to Figure 3.23,

when the environment around the sensor is stationary, the observation distribution is

well captured by a Gaussian. In reality, however, there could be metal objects around

the probe that disturb the magnetic field, resulting in noisy distributions. These could

be, for example, metallic surgical tools that are brought in the vicinity of the probe. It

is difficult in practice to account for all such foreign objects in the state x, so they can

be considered the unmodeled states y, which affect the observation distribution as noise.

In our experiments, we deliberately introduced unmodeled states. A pair of metallic

forceps was waved near the sensor while collecting data.
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(b) Empirical risk R̂ versus number of states N .

Figure 3.24

The number of observations per state M was chosen in a similar manner as described for

the laser sensor (Section 3.5.1). The loss in estimation versus M is shown in Figure 3.24a.
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Reaching the threshold required about 300 samples. The more complicated distributions

of the field sensor require a larger M for nonparametric modeling than the laser.

The choice of a baseline P-Reg was a Gaussian distribution, with a kernel smoothing

procedure for the regression step. For both procedures, empirical risk on test data

versus N is shown in Figure 3.24b. Not only does NP-Reg have lower risk in this case,

it continues to improve with increasing data. The risk for P-Reg converges quickly, to a

higher value. The hard-to-model distributions benefit from the nonparametric modeling.

Sample histogram predictions are in Figure 3.25. NP-Reg comes closer to capturing

the multi-modality of the observation distribution.
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Figure 3.25: Example histogram predictions.



Chapter 4

Off-Road Lidar simulation

4.1 Introduction

Lidars are a key technology that have helped advance achievements in outdoor robots.

As sensors, they provide robots with observations of the environment. A large amount

of software is developed to process Lidar observations, for example, algorithms for state

estimation and recognition. Such software should be able to deal with the noise and

scale of Lidar data, among other requirements. The reliable and high-quality perfor-

mance of perception software is essential for good decision making in the higher levels

of autonomy. As the scale of robot operations grows, so do the challenges of software

development. It may be difficult, unsafe, or expensive to develop software on enough

real-world environments. Simulators have attracted attention as a solution to these

problems. They are generative, and so conditions that are difficult or expensive to test

in reality may be queried in simulation. Full state information is available in simulation,

which is not the case in reality.

In this chapter, we focus attention on the off-road case. We present some motivating

examples for building high-fidelity off-road Lidar scene simulators. Consider developing

software, for tasks such as terrain modeling [1] and virtualized reality [2], for off-road

mobile robots. Real-world development can be very expensive, with potential delays

due to unforeseen weather and hardware issues. Further, some tests amount to repeated

robot runs under different software or hardware configurations. Such problems are an

ideal fit for solution by simulation. Another example is the use of Lidars in autonomous

helicopters. In [3], a convolutional neural network (CNN) was trained to detect landing

zones from Lidar observations. Real data was obtained from expensive flight tests.

Synthetic data was obtained in [3] using a simple simulator. It was noted that a priori

modeling of Lidar returns from vegetation was difficult, and that simulator evaluation

59
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was a challenge. In this work, we build realistic Lidar models from data. We also perform

data-driven evaluation of simulators, comparing against real data from complex scenes.

Synthetic data from the simple simulator in [3] was found to be useful in parameter

selection; a high-fidelity Lidar simulator can be of greater value in training learning

algorithms.

Figure 4.1: The domain of our work is off-road Lidar scene simulation. We may
collect training data in scene 1, and want to simulate in a query scene 2.

Figure 4.2: Data logs from the real scene have high fidelity on the training data. They
typically fail to generalize to the training distribution, and have limited expressiveness.

In urban scenes, where objects with planar structure are be more common. For such

objects, raycasting followed by additive noise may be a good sensor model. Off-road

environments contain terrain such as uneven roads, trees, shrubs, and other vegetation.

Effects such as pass-throughs and mixed pixels are seen in Lidar data. Modeling such

terrain is an added challenge. A useful simulator has the qualities of being high-fidelity,
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Figure 4.3: Open-source simulators typically are high expressive. However, the fi-
delity of simulation is often insufficiently evaluated.

x
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m
)
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scene 1 scene 2

?
Figure 4.4: The hybrid geometric simulator models terrain with a combination of
surface meshes and Gaussian distributions. These are fit to data. However, it is geo-

specific, and new scenes cannot be simulated.

and expressive. A high-fidelity simulator is one whose output is realistic. In terms of

the notation in Chapter 2, it has low simulation risk. An expressive simulator is one

in which different real-world scenes of interest can be reconstructed. We discuss the

available options for off-road Lidar simulation. The first option is to use data logs for

simulation. Dataset in the form of sensor poses and observations, {qsensor,i, zi} can be

logged in a training scene. At a query pose close to a pose in the dataset, such as

qsensor,i for some i, the real observation zi is simply played back. In this sense, data

logs have high fidelity. Of course, for poses that are far from those in the dataset, the

simulation loss will be high. This is why data logs are useful only in preliminary stages



Chapter 4. Off-road Lidar simulation 62

of software development. Data logs have low expressiveness, as new scenes cannot be

composed. See Figure 4.2. A second option for simulation is an existing general-purpose

robotics simulator, such as Gazebo [10]. The fidelity of such Lidar simulation is, at

worst, low, and at best, untested. There exists little work in systematically comparing

simulated data to real ranges. It in unclear how calibrated the models are to real data,

at multiple levels: the sensor models, and the mesh model structures. On the other

hand, such simulators are highly expressive: 3D models of vegetation available online

may be obtained for use. New scenes may be constructed using interfaces designed to

simplify a user’s effort. See Figure 4.3. A third option is a simulator based on the

hybrid geometric model presented in [18]. A sensor model which takes into account

non-idealities of Lidar data was considered. Terrain was modeled using a combination

of surface meshes, and permeable volumetric elements. The models were fit to real Lidar

data, and high-fidelity simulation was demonstrated. However, the simulator was ‘geo-

specific’: tied to the scene where data was collected. The models were blind to scene

semantics. It was not possible to compose new scenes, and expressiveness was low. See

Figure 4.4. The three options, charted on a graph of expressiveness versus fidelity, are

shown in Figure 4.6. Our approach is to build a simulator that is both expressive and

high-fidelity. We use the hybrid geometric models as our starting point, inheriting its

realism for off-road Lidar simulation. We then propose to assign semantic meaning to

the point clouds, and extract scene primitives from the training data. A primitive is

associated with a class, such as tree or shrub, and a sensor-realistic geometric model.

New scenes can be composed using the primitives. See Figure 4.5.

-490
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-470 x
 (

m
)

-480

-470
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scene 1 scene 2

Figure 4.5: The proposed simulator adds semantic information to the hybrid geomet-
ric model, in order to extract primitives. The primitives can be used to compose a new

scene.

The outline of the chapter is as follows. In Section 4.2 we discuss related work. We
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Figure 4.6: Existing options for off-road Lidar scene simulation are either high-fidelity,
or expressive. Our proposed solution is both.

summarize work that led up to the hybrid geometric models for Lidar simulation. We

make connections to recent research in robot and computer vision. In Section 4.3, we

present an overview of our approach to Lidar scene simulation, followed by details. In

Section 4.4, we evaluate our approach with real-world experiments.

This chapter contains work from the following.

Tallavajhula, Abhijeet, Meriçli, Çetin, and Alonzo Kelly. ”Off-Road Lidar Simulation

with Data-Driven Terrain Primitives.” ICRA 2018.

Tallavajhula, Abhijeet, Meriçli, Çetin, and Alonzo Kelly. ”Application-level Evaluation

of Off-Road Lidar Simulation.” Manuscript.
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4.2 Related work

Interest in simulators has been growing. Gazebo [10] is an open-source simulator that

was promoted, and received support for development, as the platform for the simulation

track of the DARPA Robotics Challenge [4]. There have also been government projects

to develop simulators, such as the VANE platform [15]. For computer vision, simula-

tors based on game engines, such as Unity [52] and Unreal Engine 4 [53], have gained

popularity for sophisticated scene rendering, and the ability to create detailed virtual

worlds. Aside from realism, development of such simulators has focused on a number of

factors such as software architecture, user interfaces, communication between modules,

visualization, and others. In our work, we focus only on realistic models, and simulator

evaluation.

A number of general-purpose robotics simulators [10, 11, 21] perform Lidar simulation.

Most simulate observations by calculating the range to object models, and adding Gaus-

sian random noise. Aside from the sensor models being simple, how to assign appropriate

values to the parameters is unclear. While such a sensor model works for simulating

Lidar returns from large, extended objects, off-road terrain such as vegetation present a

challenge. Lidars interact with fine structure, such as leaves, resulting in effects such as

pass-throughs and mixed pixels [16, 54]. The sensor model presented in [55], and the cor-

responding simulator [15], account for mixed pixels by raycasting multiple rays for each

Lidar beam. Unfortunately, this approach is expensive when simulating observations

from thin structures. In addition to a sensor model, off-road Lidar simulation requires

a terrain model. The graphics community has paid attention to modeling plants, such

as the generative model in [56]. However, there was no comparison to real vegetation,

nor was it obvious how the model could be tuned to fit real observations. A method

to reconstruct trees from real data was presented in [57]. However, the focus was on

visually realistic trees. In a similar vein, [58] used domain knowledge of tree structure

to guide an iterative reconstruction from data. Neither of these approaches considered

modeling vegetation for the purpose of simulation.

An extensive evaluation of models for off-road Lidar simulation was carried out in

[18, 59]. A hybrid geometric model was found to perform well for different types of

terrain. The ground was modeled as a triangle mesh, and non-ground terrain as a set of

Gaussian distributions. The sensor was modeled jointly with the terrain structure. Lidar

effects such as pass-throughs were modeled by associating geometric elements with a hit

probability. The models were fit to real data, and realistic simulation was demonstrated

in [18]. We will refer to the resulting simulator as the hybrid geometric simulator. The

hybrid geometric simulator is used as a base for our work, although, as noted in Sec-

tion 4.1, it only simulates a fixed scene. Only query poses close to the training poses
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would yield realistic results. No semantic information beyond ground and non-ground

is attached to the models. Therefore, new scenes cannot be simulated. This is a major

handicap for software development, in which we may want to test algorithms on new

scenes before real-world deployment.

There has been recent work in simulation for testing robot perception algorithms. [23]

presented a high-fidelity simulator for evaluation robot vision. A synthetic scene was

created using Unreal Engine 4. The advantage of a simulator, in being able to test algo-

rithms under varied simulated conditions, was demonstrated. A number of interesting

trends were observed for SLAM algorithms in simulation. Testing of the same algorithms

on real data, however, was limited. It was observed that performance in simulation was

better than in reality, and noted that the performance trends in reality paralleled those

in simulation. A simulated dataset for UAV tracking was presented in [22]. This too

was on Unreal Engine 4, which was recently made open-source. The game engine is

extremely flexible, allowing the creation of virtual worlds with varied characteristics.

How closely the virtual worlds created in the dataset map to real worlds, however, was

unaddressed. Similar to [23], the advantage of a simulator, in the performance of track-

ers under a number of different conditions and metrics, was demonstrated. However,

how well the conclusions translate to real data was untested.

Simulated data has long been used in the computer vision community. Given the dom-

inance of learning-based methods, gathering adequate training data can be a challenge.

It may be difficult to collect large datasets, label them, or deal with different domains.

The challenges are especially relevant for deep learning methods. For these algorithms,

useful feedback during the entire software development path is less important. What

matters is the final performance of an algorithm on some test data. The evaluation of

simulated data is often in terms of the benefit to performance of a learning algorithm.

Synthetic data has been used for pedestrian detection [24, 60, 61]. In [24], for example,

the task was to detect pedestrians in the field of view of a fixed camera. Not enough

real data, with annotated pedestrians in the field of view, existed. The state in simula-

tion consisted of synthetic pedestrians rendered in the real scene, using 3DS Max1 from

Autodesk. The appearance, locations, and poses of synthetic pedestrians were chosen

heuristically. Simulation was evaluated at the level of algorithms. The performance (on

real data) of a detector trained on purely synthetic data was compared against detectors

trained on real data. In the supplementary material, it was noted that algorithm per-

formance was critically dependent on the quality of simulation. While no quantitative

results are presented for how the performance varied with simulator parameters, it did

appear that some (e.g. sharpness of rendering) were selected to improve performance.

1https://www.autodesk.com/products/3ds-max/overview

https://www.autodesk.com/products/3ds-max/overview
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SYNTHIA [27] is a recent synthetic dataset for semantic segmentation. Virtual urban

worlds were generated using the Unity development platform. The simulation scenes

were extremely expressive, consisting of diverse urban environments. How they were

specified, and how well they mapped to real environments, however, was unclear. CNNs

trained on a combination of real and simulated data were found to perform better, than

those trained on real data alone. A similar conclusion was reached by [25], in the domain

of object detection. In [25], synthetic images were appended to the real training images.

Realistic simulation of texture and background was found to be unnecessary when there

were enough real images. It was found to matter, however, when transferring algorithms

to new domains (detecting novel categories). The importance of obtaining some amount

of data from the target domain has also been demonstrated theoretically [19].

Work with similar motivations as [27], but for the task of indoor scene understanding,

is presented in [28]. It used SceneNet [62], a synthetic dataset of annotated indoor

scenes. OpenGL was used to obtain color and depth maps of the scenes from different

viewpoints. Realistic sensor models were used, as described in [63]. Compared to other

work, [62] laid emphasis on creating realistic scenes in simulation, using object co-

occurrence statistics calculated from real data. For the task of semantic segmentation

on real data, it was shown that training on synthetic data, followed by fine-tuning on

real training data, outperformed training on real data alone. [26] also uses synthetic

data, in the form of RGB-D images, for indoor scene understanding. BlenSor [12] was

used as a rendering engine. Simulated scene generation was unaddressed, and scenes

were generated at random. It was observed that performance on challenging real scenes

could be transferred by training on simulated data, followed by a small amount of real

data.

For the task of multi-object tracking, a Virtual KITTI dataset was created in [5]. To

create realistic scenes, virtual seed worlds were created using annotations in the real

KITTI dataset. Other aspects such as illumination and background adjusted manually.

Like much of other work in creating synthetic data, [5] used a game engine (Unity) for

rendering images of virtual scenes. Simulation allows testing under varied environments,

and in [5], the effect of conditions such as challenging weather, on the performance of

algorithms, was calculated.
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4.3 Approach

4.3.1 Real and simulated scenes

We first present an outline of our approach to simulation. Various steps, including im-

plementation details, are discussed in subsections that follow. The core of our simulator

is written in C++, and we use MATLAB for labeling and scene generation.

For off-road scenes, it is unreasonable to assume that the real state x will be known. We

do not have an expression for x, or an explicit way to characterize the real state space

X . Our choice of the simulated scene, and the simulated state, will necessarily be an

approximation. The simulated scene will have to be inferred using information logged

from a real scene. This is in contrast to the indoor scenes encountered in Chapter 3. An

implication is that sensor modeling is not the only (or the main) task at hand for off-road

Lidar simulation. To see why, consider building a sensor model for a Lidar interacting

with vegetation using the methods in Chapter 3. To frame the problem purely as sensor

modeling, we might need to accurately obtain the shape of real vegetation. This is

difficult task even for the simplest of plants. Even if we could train a sensor model at

the histogram level using data-driven methods, such a model might not be very useful

during test. This is because the shape of vegetation during test will also have to be

known. In the off-road case, therefore, we perform simultaneous mapping and sensor

modeling. The description of the terrain and how the sensor interacts with the terrain

are linked. For the indoor Lidar simulator, objects in simulation corresponded to objects

in the real world. For off-road Lidar simulation, the scene representation may not be

physically realistic. What matters is that the representation is optimized for the purpose

of Lidar simulation.

The building block of the scene in simulation is a scene element e = (ρ, ω). A scene

element is the output of a joint modeling of the terrain and sensor. Therefore, it consists

of the element geometry ρ, and sensor model parameters ω. As in the indoor case

(Section 3.4.1), the simulator state x̂ = (S, qsensor) consists of a scene S and the sensor

pose qsensor . A scene S = {ok} is a set of objects. An object o = (c,M, qobject) consists of

an object class c, model M , and pose qobject. The object class c is a categorical variable,

and functions as an identifier. The object model M = {ei} is a set of scene elements.

In our approach, scene elements are fit to real data. Since these elements constitute the

object model M = {ei}, an object contains information about how the Lidar interacts

with the real world. Our idea is to re-use this information for future simulation. We do

this by storing objects from a training scene into a library. Such an objects will be called

a scene primitive, π = (c,M). A primitive is simply an object from a training scene,
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transformed to identity. Since the pose of all primitives are the same, we omit writing

the pose in the tuple of a primitive. The unique set of scene primitives is then the

primitive set, Π = {πj}. For Lidar simulation, we build new scenes using the primitive

set. To construct a simulation scene, we also need information telling us ‘which object

goes where’. This is contained in the scene annotation a = {(ck, qobject,k)}. A scene

annotation is just the set of object classes and poses.
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Figure 4.7: Outline of our approach.

We assume the availability of a training dataset Dtrain = {(qsensor,i, zi)} consisting of

sensor poses and observations. This may be collected, for example, by driving a robot

with a Lidar in a real scene, and logging observations (see Figure 4.7). Using the sensor

poses and intrinsics, we transform the range measurements to points in the world frame,

to obtain a point cloud Ytrain. The point cloud is segmented into ground and non-ground

points. We then fit scene elements {ej} to each segment separately. To ground points, we

fit a triangle mesh; the element geometry ρ is therefore a triangle. On the non-ground

points, we perform a clustering; ρ in this case is an ellipsoid. The different element

geometries used are why we call this approach the hybrid-geometric simulator. Once

the geometry of the point cloud has been obtained, we find the sensor model parameters

ω for each element. These include hit probabilities and range variances. Having modeled

the training scene, we can simulate observations by querying a Lidar pose qsensor. We

obtain a simulated point cloud Ŷtrain by querying the sensor poses in the training data

log Dtrain. We use the simulation risk to compare simulated data with reality. The

simulator parameters θ are tuned to minimize this error metric.

The procedure outlined above leads to a Lidar simulator which has been optimized to

simulate observations in the fixed training scene. This is exactly where the work of
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[18] terminates. At this point, the scene elements {ej} are blind to objects semantics.

Therefore, we perform object segmentation and labeling in the point cloud Ytrain, from

which the annotation a = {(ck, qobject,k)} is derived. The segmentation also allows us

to group elements into an object model, Mk = {ej | ej ∈ segmentk}. These pieces of

information are combined into scene objects {ok}, ok = (ck,Mk, qobject,k). Finally, we

transform objects to identity (as a reference pose), thereby extracting a set of primitives

Π = {πi}, πi = (ci,Mi) from the training scene. The approach is summarized in Figure

4.7.

For a test (or new) scene, we collect data in a similar manner as for the training scene,

resulting in the dataset Dtest. In this case, however, we do not fit scene elements to the

point cloud Ytest, since we want to evaluate the generalization of the scene primitives

obtained from the training data. The cloud Ytest is segmented and labeled, resulting in

an annotation a = {(ck, qobject,k)}. This annotation for the test scene is combined with

the scene primitives, from the training scene, to result in objects. Having constructed a

simulated test scene, we can simulate Lidar observations at query sensor poses qsensor.

Once again, simulator evaluation is done using the simulation risk.

4.3.1.1 Ground segmentation

overhead view points after ground segmentation

Figure 4.8: Example segmentation of training scene cloud into ground (brown) and
non-ground (green) points. Corresponding overhead view of the off-road scene is shown

on the left.

Ground segmentation is performed on the point cloud Y = {yj} obtained from the

training data, and is a preprocessing step before scene elements are fit to Y . Ground

segmentation is a routine step in point cloud processing [64, 65], and we use a simple

procedure based on geometric features, as in [18]. The spherical variance φ(y) of a

point y is calculated as follows. For points in a ball of radius dφ, centered at y, the
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covariance is computed. If the eigenvalues of the covariance matrix are λ1 ≤ λ2 ≤
λ3, then φ(y) = λ1

λ1+λ2+λ3
. If there are less than Nmin,φ neighbors, a default value is

assigned, φ(y) = φdefault. Optionally, the spherical variation values can be smoothed

with neighbors within a radius dsmooth,φ, as

φ(ri) =

∑
j wijφ(ri)∑

j wij
, (4.1)

wij = exp

(
−ηd
‖yi − yj‖2

d2
smooth,φ

− ηφ
(φi − φj)2

(1/3)2

)
. (4.2)

The spherical variation is a measure of the ‘flatness’ of the local neighborhood. It

achieves the largest value of (1/3) for a sphere. Classification of a point is ground

if it is less than a threshold, φ(y) < φthresh, and non-ground otherwise. The different

parameters used in ground segmentation are tuned on a manually segmented point cloud.

4.3.1.2 Scene elements
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Figure 4.9: Hybrid geometric scene elements. Ground points are modeled by a tri-
angle mesh. Non-ground points are clustered into Gaussian distributions. The red
markers are real Lidar range data. The points are derived from the same scene shown

in Figure 4.8.

Once an input cloud is segmented into ground and non-ground, we jointly model the

terrain and sensor by fitting scene elements to the point cloud. A detailed study of

different approaches to terrain modeling was carried out in [18]. For terrain without

fine structure, surface modeling based on triangle meshes was found to perform well for

simulation. The surface model is appropriate for a number of urban scenes. For terrain

with fine structure, such as wires in urban environments, and vegetation in off-road
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Figure 4.10: Elements are associated with a hit probability, according to which a
ray intersecting an element may pass through. On the left, the ray first strikes the
volumetric element shaded in red. It may pass through, and intersect the element
shaded in red, on the right. The points are derived from the same scene shown in

Figure 4.8.

environments, volumetric models were better for simulation. It was also found to be

important to incorporate permeability in the models, whereby a ray striking an element

(a mesh triangle or a volumetric element) can pass through with some probability. [18]

considered two volumetric models. The first was a regularly sampled voxel grid, with a

Gaussian distribution of observations associated with each voxel. The second was a set

of Gaussian distributions, obtained from top-down clustering of the point cloud, with

a Gaussian distribution of observations associated with each cluster. The voxel grid

is computationally more efficient, but introduces voxelization artifacts. The top-down

clusters were observed to model irregular structure in the environment better, but at the

cost of increased computational cost. Compared to the surface model, the disadvantages

of the volumetric model were: slower for simulation, and increased range variance when

applied to planar terrain. A hybrid model was introduced to combine benefits across

models. The ground points were modeled by a triangle mesh, and non-ground points

by Gaussian distributions. We refer to this model as the hybrid geometric model. The

hybrid geometric model was found to perform well across terrain types, from urban

to off-road. The lesson for Lidar simulation, from the work of [18], was that surface

elements are appropriate for terrain with planar structure, while volumetric elements

are appropriate for terrain with irregular structure.

Modeling ground points. Working with the above insight, we model ground points

by a triangle mesh (see Figure 4.9). We first fit a surface to the points. This is exactly

regression as described in Section 3.3.2. The unknown function being fit in this case

is the physical ground. We make use of the RBF interpolation tool 2 in ALGLIB [66].

ALGLIB is a C++ data analysis library. The number of points in the ground surface

can be large (∼ 1e5), even after subsampling. The RBF interpolation tool is suitable

for our use case. It uses compact Gaussian radius basis functions for regression, which

2http://www.alglib.net/interpolation/fastrbf.php

http://www.alglib.net/interpolation/fastrbf.php
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brings down the computational complexity to O(N logN) from O(N3) (for a method

such as Gaussian Process regression [49]). The parameters of the regression tool are

the radius of the basis function, and a regularization constant. A higher regularization

constant results in a smoother surface fit.

After obtaining a surface fit, we triangulate it using the Delaunay triangulation tool in

CGAL [67]. CGAL is a C++ library that provides a number of computational geometry

algorithms. We also use the library to query intersections between a triangle mesh and

a ray. We perform simple filtering steps to remove noise in the mesh generation. For ex-

ample, we filter out isolated points whose nearest neighbor exceeds a threshold. Because

of the uneven shape of the ground encountered in off-road scenes, the triangulation may

generate large triangles as an artefact. We also filter these out using an upper threshold

on the triangle side lengths.

Each ground element ej = (ρj , ωj), therefore, has a triangle for its geometry ρj . The

sensor model parameter ωj = (σ2
ground, Phit,j) consists of the range variance σ2

ground, and a

hit probability Phit,j . These parameters are used as follows. Suppose that a ray intersects

a triangle element. We flip a coin, and with probability Phit,j , declare the intersection

a hit. With probability 1− Phit,j , the ray passes through the triangle element. Suppose

we sample a hit, and the nominal range is r. The simulator adds noise independently

sampled from the Gaussian distribution N (0, σ2
ground) to r. The parameters σ2

ground and

Phit,j are calculated from data. The range variance is calculated from the training data.

For observed hits in the training data, after computing residuals ξj = zj − rj ,

σ2
ground =

1

Nresiduals

Nresiduals∑
j=1

(zj − rj)2.

The hit probabilities act as a filter for triangles as well. If extra triangles were generated,

and no observed rays intersect with them, we expect Phit,j = 0.

Modeling non-ground points. Non-ground points for off-road terrain in our case

correspond to Lidar observations from trees, shrubs, and other vegetation. To model

their irregular structure, we fit Gaussian distributions to these points (see Figure 4.9).

The Gaussian distributions are obtained using hierarchical clustering. We use the hi-

erarchical k-means clustering tool part of the FLANN [68] C++ library. In top-down

hierarchical clustering of points, all points initially belong to one cluster. The points

are clustered using an algorithm (in this case, k-means). Each cluster is, in turn, fur-

ther clustered using the same algorithm. The process continues recursively, till an edge

case is met. An example edge case is a threshold on the minimum number of points

in a cluster. The number of clusters at each stage is specified by a branching factor.

The result of the recursive clustering is a tree of clusters, called a dendrogram. The
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dendrogram is then cut at some level to minimize the cluster variance, and the result is

returned. One of the parameters of the procedure is the number of clusters requested.

For other internal clustering parameters in FLANN, such as the branching factor and

initialization method, we used defaults.

Each cluster returned is a scene element. The geometry ρj = (µj ,Σj) of the element is an

ellipsoid. For Mj points in the cluster, the ellipsoid mean and covariance are calculated

as

µj =
1

Mj

∑
k∈cluster(j)

yk,

Σj =
1

Mj − 1

∑
k∈cluster(j)

(yk − µj)(yk − µj)T .

The sensor model parameters in this case are ωj = (µj ,Σj , Phit,j). The cluster mean

and covariance are used for a Gaussian distribution associated with the ellipsoid. If

a ray hits an volumetric element ej , then the simulated observation is a sample from

the distribution N (µj ,Σj). Ray-ellipsoid intersections can be calculated in closed-form.

Sampling in this manner smears observations, taking into account some of the mixed

pixel effects. The hit probability is a parameter that models pass-throughs in Lidar

data. When a ray intersects an element ej , a Bernoulli random variable is sampled with

probability Phit,j . If the value is 0, the ray passes through. The ray may intersect another

element ek, in which case Phit,k is sampled (see Figure 4.10). In an off-road environment,

successive readings may not be the same due to factors such as wind which may cause

vegetation to sway. Such effects also support using a stochastic sensor model. Once

again, the hit probability Phit works as a convenient filter. If spurious clusters have been

generated which no rays intersect, we expect Phit = 0.

For both triangle and volumetric elements, the hit probability is calculated from data

as

phit =
#hits

#hits + #misses
,

where #hits is the number of rays which hit an element, and #misses is the number which

missed the element. While counting the number of missed rays, we condition on the fact

that the rays intersected (i.e. passed through) the element. The various parameters in

modeling the ground and non-ground points are part of the overall simulator parameters,

θ.
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large tree medium shrub medium shrublarge tree

camera frames Lidar point cloud

Figure 4.11: Example instances of the vegetation classes in off-road scenes.

4.3.1.3 Scene segmentation and labeling

In this work, segmentation and labeling is manual. We first segment the Lidar data

corresponding to a scene using tools in CloudCompare [69]. The segments are then

labeled using a custom MATLAB tool, visualized in Figure 4.16. We chose MATLAB

for its support for 3D point visualization. In our custom tool, we could load a subset

of segments, subsample them, select segments easily, and load partial labelings. We

consider the following classes for vegetation objects:

• small shrub,

• medium shrub,

• large shrub,

• small tree,

• medium tree,

• large tree.

Figure 4.12: In off-road terrain, shrubs often occur in extended sections. We deal
with such patches by dividing them into cells, as shown on the left. Like trees, shrubs

also occur in isolated instances, with examples on the right.
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We found that, while trees are often distinct and spacially localized, shrubs may be

spread over large, irregular regions. We term such regions patches. We deal with patches

by dividing them into cells of uniform size, see Figure 4.12. During training, the models

in each cell are stored as primitives. During test, a patch is populated cell-wise.

4.3.1.4 Primitives and scene construction

Having obtained scene elements and labeled segments, we combine the pieces of infor-

mation to obtain scene objects. For each segment with label c containing points {yj},
we find the pose qobject as follows. The translation is the centroid of the points. We

assume rotation along the global z-axis only. The principal axes of the points {yj} are

found in the global x-y plane. We pick the principal axis aligned closest to the velocity

vector of the sensor during data collection, and set that to be the local x-axis of the

object. The orientation of the object is obtained from its local x-axis.

To find the object model M of an object o, we fit an oriented bounding box to the

object points {yj}. The box is oriented along the local coordinate frame of the object,

calculated above. The extents of the box are based on the coordinates of the points in

the local coordinate frame. The object model then consists of scene elements in the box

interior, M = {ej | ej ∈ object bounding box}. Using the pose qobject, we then transform

the object model M to identity, and store the result as a scene primitive π = (c,M). The

primitives together constitute the primitive library Π. This data-driven primitive library

is our main tool for increasing the expressiveness of the hybrid geometric simulator.
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Figure 4.13: The scene annotation tells us which object goes where. An annotation
is used along with the primitive library to construct a query scene.

For a new scene, we use an annotation a = {(ck, qobject,k)}, consisting of object classes

and poses, to populate the simulated scene. For a pair (ck, qobject,k), we pick a primitive

πi = (ci,Mi) such that ci = ck. In our implementation, the annotation for a new scene
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is also derived from a semantic segmentation. In that case, the annotation for a scene

object includes a bounding box. We use the heuristic of selecting the primitive whose

bounding box most closely matches the bounding box of the scene object. For the metric

between bounding boxes, we use the Euclidean norm of the box extents. The primitive

model Mi is then transformed to the pose qobject,k, resulting in object ok. The annotation

a can correspond to arbitrary scenes.

4.3.2 Simulator evaluation

Observation-level loss

x

x

x

x

true hits: 2, 3
true misses: 1
false hits: 4
false misses: 5

error:

precision: 2/3
recall: 2/3real simulation

Figure 4.14

In our case, a sensor observation z is a packet of Lidar data. Each packet consists of

returns from rays fired at different directions, from a common sensor pose qsensor. Some

of the rays result in hits, and others in misses. A simulated observation ẑ will also contain

hits and misses, some of which will be true, and the rest false. The observation-level

loss is calculated over the true hits

l(z, ẑ) =
1

# true hits

∑
j∈ true hits

‖yj − ŷj‖, (4.3)

where y is the 3D point corresponding to a range return. To compare the false hits and

misses, we also computed the F1 score over observations,

F1 =
2 ∗ precision ∗ recall

precision + recall
, (4.4)

precision =
#true hits

#true hits + #false hits
, (4.5)

recall =
#true hits

#true hits + #false misses
. (4.6)
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Apart from an observation-level error, we also compare the real point cloud Y with

the simulated point cloud Ŷ , as a gross measure. The asymmetric point cloud error is

defined as

l̃pcd(Y, Ŷ ) =
1

n′

n′∑
j=1

‖ynearest(j) − ŷj‖, (4.7)

ynearest(j) = arg min
y∈Y
‖y − ŷj‖. (4.8)

Using the asymmetric error above, we computed the symmetric point cloud error,

lpcd(Y, Ŷ , θ) =
1

2
(l̃pcd(Y, Ŷ ) + l̃pcd(Ŷ , Y )). (4.9)

Baseline simulator

Neighbor simulator. In Section 4.1, we described the use of a data log as a simulator.

This is limited to simulation in the training scene. Given a training dataset Dtrain =

(qsensor,i, zi), a query sensor pose qsensor and a ray v, we calculate the distance along the

ray dv‖ and perpendicular to the ray dv⊥ of Lidar hits in the dataset. The simulated

observation is

ẑ = zj ,

where j = arg min
i
dv‖,i, for dv⊥,i < dv⊥,thresh.

Points which are far from the query pose and ray are filtered by a threshold on the

perpendicular distance to the ray. We also apply the standard filters on maximum and

minimum ranges, which are intrinsic to the Lidar sensor. If no points satisfy the Boolean

conditions, a null value is returned.

Mesh model simulator. As a baseline scene simulator, we implemented a baseline

that was representative of what may be achieved using current general-purpose robotics

simulators. In the mesh model simulator, the primitive library (and consequently, scene

objects), were derived open-source 3D mesh models. This baseline was also implemented

in C++, with each mesh model held in a CGAL triangle list. The sensor model consisted

of raycasting with the object models, followed by adding Gaussian noise to the nominal

range.

We obtained mesh models of trees and shrubs from TurboSquid3. The number of avail-

able models were limited due to reasons such as: scarcity of freely available mesh models

of natural terrain; use of proprietary file types; large-size (> 10MB) mesh models. The

3https://www.turbosquid.com/

https://www.turbosquid.com/
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raw mesh models required processing for use, as they had to be subsampled, trans-

formed, scaled and sorted into appropriate classes. Example baseline primitives are

shown in Figure 4.17. Given an annotation, scene objects are constructed from mesh

model primitives for the baseline in the same way as for our hybrid geometric scene

simulator.

Implementation specifics

Some steps taken to speed up the modeling and simulation were

• The ground as well as non-ground segments are divided into blocks. Each block is

modeled and stored independently.

• A simulated scene can be hundreds of meters long. Performing intersection checks

for each simulation query is inefficient. For the non-ground volumetric elements,

we create a local set of Gaussian distributions around a query ray. Similarly, for

the baseline mesh model simulator, we check intersection with a local set of mesh

objects. The local set is obtained using the k-d tree tools provided by the FLANN

C++ library [68].

• Simulation is independent across rays, and can be parallelized. We use OpenMP

4 for a simple parallelization over the query rays.

• For the mesh model simulator, subsampling the open source meshes was found to

be important to bring the simulation time down to the same order as the time

taken by our approach.

Further optimizations are doubtless possible; software design and real-time simulation

were not the focus of our work. The list above is a sample of parts of the implementation

that can be addressed for faster simulation.

4http://www.openmp.org/

http://www.openmp.org/
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4.4 Experiments

4.4.1 Observation-level simulator evaluation

(a) Data collection platform. The Lidar is at
the top of the sensor head.

test scenetraining scene

test scene 2

1

(b) Data collection site. The vehicle path is
marked in black. Test and training scenes are

marked in red.

Figure 4.15

In our experiments, data was collected using a custom ground vehicle mounted with a

Velodyne-32 Lidar5, see Figure 4.15a. Lidar packets, each consisting of hit and miss

returns, were received at 20 Hz. Each packet constituted an observation z. Vehicle pose

was provided by a Novatel SPAN6 pose system. After post-processing, pose information

was available at sub-centimeter position accuracy, at a frequency of 2E2 Hz. The sensor

pose qsensor was calculated from the vehicle pose, and the fixed relative pose of the Lidar

with respect to the vehicle. Data was collected in an off-road site nearby Pittsburgh,

depicted in Figure 4.15. Lidar packets were logged as the vehicle was driven manually,

at an average speed of 2.4 m/s. Modeling and evaluation steps of the simulator were

conducted offline. We selected one scene for training and two for test, as marked in

Figure 4.15. We ran the hybrid geometric modeling steps on the training scene, resulting

in a representation of the scene as a combination of surface triangles and volumetric

ellipsoids. Values for simulator parameters θ are summarized in Table 4.1. Parameters

were optimized (using NLopt [70]) on a 10 sec slice of the training scene. The objective

was minimization of the mean packet error+2(1− F1 score).

For the training scene, we verified that the hybrid geometric models result in better

simulation than the neighbor simulator baseline, as also found in [18], see Table 4.3.

The semantic segmentation of the training scene is shown in Figure 4.16, and example

primitives obtained for each class are shown in Figure 4.17. Statistics for the primitives

are collected in Table 4.2. The test scene, which was longer than the training scene,

5http://www.velodynelidar.com/hdl-32e.html
6https://www.novatel.com/products/span-gnss-inertial-systems/

http://www.velodynelidar.com/hdl-32e.html
https://www.novatel.com/products/span-gnss-inertial-systems/
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Parameter name Selection method Value

Ground segmentation
maximum distance to neighbor heuristic 5m
minimum neighbors to compute feature heuristic 10
default spherical variation φdefault optimization 0.01
threshold φthresh optimization 0.09

Modeling ellipsoid elements
minimum points per cluster optimization 5
(hit count prior, miss count prior) heuristic (0, 1)
clusters per point optimization 0.042
maximum Mahalanobis distance for hit optimization 3.5

Modeling triangle elements
regression basis radius heuristic 5m
regression regularization constant optimization 0.001m
maximum triangle side optimization 10
(hit count prior, miss count prior) heuristic (1, 2)
range variance fit to data 0.07m2

maximum residual for hit optimization 0.75m

Table 4.1: Hybrid geometric simulator parameter values

x

y

z

50m

Figure 4.16: Segmentation and labeling for the training scene. The test scene is
processed in the same way.

Primitive class Instances Mean ellipsoids per instance Mean instance height (m)

low shrub 4 4 1.1
small shrub 18 12 2.1
medium shrub 27 24 3.8
large shrub 10 34 5.4
small tree 32 150 5.9
medium tree 33 301 9.4
large tree 19 161 13.4

Table 4.2: Training scene primitive statistics
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open-source mesh primitives

data-derived ellipsoid primitives

low 

shrub

medium 

shrub small tree large tree

0m

15m

0m

15m

Figure 4.17: Examples from the primitive set. The top figure shows primitives ob-
tained from the training data. The bottom figure shows primitives obtained from freely

available mesh models.

was then constructed in simulation, see Figure 4.18a. Lidar data from the test scene

was used to obtain the annotation, but the simulated objects were constructed entirely

from the training scene primitives. A simulated scene was also constructed using the

baseline simulator, see Figure 4.18b. From the data collection step, we obtained the test

dataset of sensor poses and observations, Dtest = {(qsensor,i, zi)}. Given the dataset, we

could directly model the test scene for simulation. Our aim, however, was to evaluate

simulation of complex, new scenes using primitives from training scenes. By querying the

simulated scenes at the sensor poses in the test dataset, we obtained the simulated sensor

observations, {(qsensor,i, ẑi)}. Evaluation results of simulation are summarized in Table

4.3. Our simulation approach, based on data-driven terrain primitives, is quantitatively

better than the baseline, based on open-source mesh primitives. Point clouds for different

data sources are shown in Figure 4.19. The nearest neighbor simulator is myopic, and
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cannot simulate objects at the background of a viewing direction. Compared to the

mesh primitives, our approach results in simulation with more realistic object shapes,

and has significantly higher recall.

Scene Simulator Point cloud error Observation-level risk Precision Recall F1

Training Our approach 0.26m 3.2m 0.52 0.95 0.67
Training Neighbor sim 0.30m 9.8m 0.55 0.61 0.57

Test 1 Our approach 0.48m 2.9m 0.57 0.85 0.68
Test 1 Mesh primitives 0.55m 3.1m 0.58 0.75 0.65

Test 2 Our approach 0.58m 3.6m 0.56 0.81 0.66
Test 2 Mesh primitives 0.72m 3.8m 0.54 0.67 0.59

Table 4.3

(a) Simulated objects with the hybrid geomet-
ric elements.

(b) Simulated objects with the mesh model
simulator.

Figure 4.18: Simulated test scenes.

There are also qualitative ways in which our approach is better. The example in Figure

4.20 illustrates the benefit of the volumetric elements of our approach, over the surface

triangles of the baseline. The ray origin is on the left. In our approach, the ray intersects

ellipsoids, and the simulated point is close to the real point. In the baseline, the ray

misses the mesh triangles close to the real point. The simulated point instead is much

farther down the ray, where it intersects another mesh. This is why the length in the

y-axis in the figure for the baseline (60m) is greater than that for our simulator (15m).

Figure 4.21 illustrates the benefit of using permeable ellipsoids over opaque surface

triangles. The ray origin is on the left, and the ray strikes a tree. The real point is in

the interior of the tree. The simulated point from our approach is also in the interior,

as the ray can pass through ellipsoids. The simulated point from the baseline, however,

terminates at the surface of the tree. The baseline tree is visually realistic, but the

hybrid geometric tree is sensor-realistic. This example in Figure 4.22 illustrates another

benefit of data-driven primitives over open-source primitives. The ray origin is at the

top right. A number of shrubs are in the path of the ray. The shape of data-driven
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real our approach neighbour sim

training

real our approach mesh primitives

test 1

real our approach mesh primitives

test 2

Figure 4.19: Real and simulated point clouds for different scenes.

primitives better match the scene objects, compared to the baseline primitives. In our

approach, the simulated point is close to the real point. In the baseline, however, the

simulation result is a false miss, depicted as a red cross. On the other hand, Figure

4.23 illustrates a weakness of our approach. The ray origin is at the top right. Low

shrubs are in the path of the ray. The clustering in this case is coarse relative to the size

of the shrubs, visible as some large ellipsoids. This causes the simulated point in our

approach to have large variance. This problem is not present in the baseline, however,

and the simulated point is close to the real point. The real point is behind meshes, and

therefore not in view. In such cases where the clustering is not fine enough, the scene has

large ellipsoids. The associated Gaussian distributions have high variance. Intersection

with these ellipsoids, in turn, resulted in false hits. This is why the precision of our

approach is lower than that of the baseline, see Table 4.3. This failure mode suggests
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that we include the FLANN clustering parameters in the simulator optimization, a step

not currently performed.

our approach baseline
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Figure 4.20: Example illustrating the benefit of volumetric elements over mesh mod-
els.
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Figure 4.21: Example illustrating the benefit of using permeable elements.
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Figure 4.22: Example illustrating the benefit of data-driven primitives.

Another application of our work is in mapping off-road sites. Lidar mapping is the task of

acquiring detailed point clouds of a site. Suppose that high-resolution point clouds were
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Figure 4.23: Example illustrating a weakness of the hybrid geometric approach, large
ellipsoids.

Figure 4.24: Application to efficient mapping an off-road site. A detailed Lidar
data log from a representative section (finely dotted line) can be extrapolated to other

sections (sparsely dotted lines).

required. If data were being logged by a ground vehicle, this would imply driving the

vehicle at a sufficiently low speed. If the extents of the site were large, then such mapping

would take a long time. It might further be slowed down or interrupted by hardware

issues, or weather changes. Mapping can be addressed using our simulation approach as

follows. A section of the off-road site can be marked as a training scene. A detailed point

cloud can be gathered from the training scene, such that scene elements can be fit, and

primitives extracted. For the rest of the site, we can construct a simulated scene, using

a scene annotation. As in our approach, the scene annotation can be obtained from

real Lidar point clouds. The idea to exploit is that segmentation and labeling can be

performed on a point cloud with resolution lower than that required for building models.

The vehicle collecting data can thus drive slowly in the section marked for training, and

quickly in the rest of the off-road site. In our experiments, for example, the average

vehicle speed in the training scene was about 5 miles per hour (mph). The segmentation
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and labeling was performed on a subsampled point cloud that could have been collected

with a vehicle speed of about 17mph. This suggests a 3-4× speedup in mapping times.

If the scene annotation was obtained using satellite imagery, the mapping time may be

further reduced. Once the off-road site has been constructed in simulation, a point cloud

of any desired resolution may be queried from it. From this viewpoint, our approach can

be seen as expensive data gathering in a representative site (the training scene), followed

by extrapolation to a larger site (the full scene) in an inexpensive manner (using scene

primitives).
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Figure 4.25: A synthetic scene, densely populated with large trees.

The simulated scenes in our experiments corresponded to real scenes. However, another

common use case of simulators is to construct arbitrary scenes. In fact, one of the

advantages of simulation is that scenes which are of interest, but difficult to reach in the

real world, can be studied. Working with arbitrary scenes is also possible in our off-road

Lidar simulator. All that is needed is to supply the simulator with an appropriate scene

annotation (Section 4.3). For example, we may want to test perception applications in

a densely forested environment. A possible annotation, and the constructed simulated

scene, are depicted in Figure 4.25. Objects from the category of large trees were placed on

either side of a straight path. The dimensions of the bounding boxes in the annotations

were based on those encountered in the training data. Performing evaluation in real

off-road scenes is advantageous for such use of simulators as well. Having shown that

the data-driven terrain primitives generalize provides support for simulation in unseen,

but similar, artificial scenes.

4.4.2 Application-level simulator evaluation

Scan matching

For the scan matching application, we considered scans derived from Lidar data from the

first test section (Figure 4.26 (a)). Since each Lidar packet consisted of rays spanning
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about 1.8deg, we aggregated 300 packets to result in a scan spanning 360deg, for a total

of N = 300 scans. Simulated data corresponding to real data was generated using our

approach and the baseline mesh model simulator.

The algorithm A used was the scan matcher in the odoscan7 ROS package. It is a

wrapper written around PCL [71] tools for registration, with additional features. For

robustness, a RANSAC procedure is run as an outer loop over the inner scan matching

iterations. Each inner scan matching is run for a maximum number of iterations, or

till one of two thresholds is met. The thresholds are: a minimum change in the pose

estimate, and a minimum change in the objective value, calculated between successive

scan matching iterations. For fast computation, there is the option of filtering the input

clouds. The filter is an approximate voxel grid, in which the the voxels are not uniform

in space, but the leaves of a k-d tree. The algorithm parameter vector α was in R7.

The parameters were: the maximum iterations for scan matching, the maximum point

correspondence distance, the number of RANSAC iterations, the RANSAC threshold,

the log-minimum transformation change threshold, the log-minimum objective change

threshold, and the log-voxel size of the filter. Let {q̃i,i+1} be the relative poses estimated

by scan matching, between time instances i and i+ 1. Let {qi,i+1} be the set of ground

truth relative poses, then the algorithm objective is the pose error norm,

J(α,D) =
1

N

N∑
i=1

‖q̃i,i+1 − qi,i+1‖.

For the difference between two poses in SE(3), we report two quantities. The first is the

norm between the two positions in Euclidean space. The second is the absolute value of

the angle in the angle-axis representation of the rotation between the poses.
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Figure 4.26: (a) Off-road scene, and vehicle path. (b) Estimated paths, for particular
application parameters, for different data sources.

7https://github.com/Humhu/odoscan

https://github.com/Humhu/odoscan
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To calculate the application-level risk, we sampled M = 103 algorithm parameters from

a uniform distribution. The results are in Table 4.4, and our simulator has lower

application-level risk than the baseline. For 100 application parameters, bar plots of

the losses are in Figure 4.27. For more insight into performance, we discuss a qualitative

difference between the simulators and reality. We observed that two important algorithm

parameters were the log-minimum objective change threshold δJ , and the log-voxel size

of the filter, δvox. The dependence on δJ was step-like: at a certain value, there was

a sharp improvement of performance, with little further improvement. For δvox, there

was an optimal value: at small values, the filter had no effect, and at large values, too

much information was filtered out. These trends are difficult to ascertain beforehand,

and are revealed on exploring the algorithm parameter space on real data. For partic-

ular application parameters, estimated trajectories are shown in Figure 4.26(b). The

scan match performance on data from our simulator is closer to reality, than on data

from the baseline simulator. Scans from the baseline were sparse compared to reality, so

at the particular value of δvox, useful information is filtered out the baseline simulator.

If development occurred on the baseline, we would pick a lower value of δvox, which

would degrade performance in reality (which has a step dependence on the parameter).

Note that obtaining the best-performing algorithm in reality, which is minα J(α,D),

is distinct from the calculation of simulation risk. We are interested in application

performance being similar in simulation and reality.
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Figure 4.27: Simulation losses for 100 α samples with the simulation objective as (a)
position error, and (b) rotation error, between real and estimated and relative poses.

Simulator Risk for J = position error (m) Risk for J = angle error (rad)

Our approach 0.070 1.6× 10−3

Baseline 0.096 6.1× 10−3

Table 4.4: Risks for off-road scan matching application
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Scene Length (m) Log duration (s) Number of Lidar packets

training 356.3 70.0 119260
test 1 650.0 116.5 210764
test 2 294.2 65.0 117426

Table 4.5: Scene statistics.

Class Low shrub (patch) Small shrub (patch) Medium shrub (patch) Large shrub (patch)
Instances 4 (2) 39 (59) 73 (55) 44 (20)

Class Small tree Medium tree Large tree
Instances 111 86 51

Table 4.6: Number of instances per class.

4.4.3 Datasets generated

We have generated the following datasets in the course of our work, which may be of

independent interest.

• Lidar simulation. Data logs from real scenes consist of sensor poses, along with

Lidar packets. Each Lidar packet consists of returns from rays fired in 32× 32 =

1024 directions. There are 32 yaw angles, with 32 pitch angles at each yaw angle.

The data can be analyzed at multiple scales, from a high-level picture of point

clouds, to a low-level view of individual rays resulting in hits or misses. The

statistics are in Table 4.5.

• Off-road segmentation and labeling. The manual segmentation and labeling

performed for the scenes serves as a dataset which can be used to train classifiers

for automatic segmentation and labeling. The number of instances across scenes

are in Table 4.6. The segments are associated with bounding boxes, so that labeled

points of varying resolution can be obtained from the data logs.
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Conclusion

5.1 Summary of contributions

We have presented a framework for data-driven Lidar sensor simulation. In our frame-

work, a simulator consists of three components: sensor modeling, scene generation, and

simulator evaluation. A good sensor model captures the complex interaction of a Li-

dar with objects. Good scene generation recreates real scenes in simulation. Good

simulator evaluation is thorough and takes into account the use case of a simulator for

robot application development. Each component is important for useful simulation. Our

framework is general, and applicable beyond Lidar simulation. For much past work in

sensor simulation, we can identify and separate efforts in each of the components. Exist-

ing work on evaluation can be re-framed as specific instances of our broader concept of

application-level simulator evaluation. We instantiated our approach for two domains,

indoor planar Lidar simulation, and off-road Lidar simulation.

• We identified sensor modeling as a special case of distribution regression, and used

this insight to construct a high-fidelity simulator for a planar Lidar sensor in in-

door scenes. We showed that an appropriately chosen parametric sensor model

outperforms the models used in current robot simulators. We demonstrated this

in a meaningful manner, through utility of our simulator for development of ap-

plications such as detection and registration.

We took the connection between regression and sensor modeling further by apply-

ing nonparametric distribution regression, developed in the learning community,

as a modeling procedure. We showed that it is an appropriate procedure when

faced with complex observation distributions, e.g. due to unmodeled state. We

believe it can play a useful role in any modeler’s toolbox, as a procedure that

90
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adapts to data to capture inherent noise, without requiring the designer to make

specific assumptions.

• We constructed an off-road Lidar simulator that was both high-fidelity and expres-

sive, where past simulators were only either. We demonstrated that object models

derived data generalize to new scenes better than open-source mesh models. We

compared simulators on complex, real-world scenes of interest. Such evaluation

justifies treating simulated data from hallucinated worlds as realistic.

We showed how our simulator can also benefit efforts to efficiently create point

cloud maps of off-road geographical sites. Our work generated off-road labeled

point cloud datasets, which may be of independent interest.

We have shown that simulation tools are likely to improve the efficiency of the appli-

cation development process. They expose the flaws in naive approaches earlier in the

development cycle, and in a manner that mimics what would eventually happen when

testing on the hardware. This is significant because it is possible to scrutinize a simulator

by slowing down time, inserting breakpoints, and other methods. Our results suggest

that we do not necessarily have to choose between realistic data and convenience in

debugging.

5.2 Future work

5.2.1 Nonparametric sensor modeling

There are a number of conditions, other than those explored in this thesis, in which sen-

sors behave in inherently noisy ways. Examples are range sensors in smoky environments

[17], and sonar sensors under water [72]. The following extensions to the nonparametric

sensor modeling procedure as described in Chapter 3 will increase its applicability.

• Relaxed assumptions on data collection. In Chapter 3, we worked with

datasets of the form {xi, zij}. That is, at each state, we sampled multiple obser-

vations. This step was assumed so that we could estimate observation densities

p̂(z|xi) at each state xi. This form of dataset was simple to collect with a Lidar

sensor in a static scene. On the other hand, there are cases where this form of

data is hard to collect. Consider a tactile sensor on a robot hand. Each obser-

vation z consists of the sensor reading when the hand approaches and contacts

some object. Even if the experiment were automated, it will be difficult to ensure

the same state x each time an observation is sampled, due to object uncertainty
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(Figure 5.1). This may be further complicated, because the velocity of the hand

when contacting the object may be part of the state. Another example is sensor

readings logged from a quadrotor as it hovers. The platform may be stable, but is

not stationary.

Figure 5.1: Collecting tactile sensor data when contacting an object. It is difficult to
collect multiple observations at the same state. Figure from Koval et al. [73].

It is reasonable, however, to assume that the states at which multiple observations

are logged are related. They may be part of a slowly varying trajectory, or within

a bounded region, and so on. This information may be exploited in the regres-

sion. On the theoretical front, this extension calls for convergence guarantees on

distribution regression, under an appropriate model of changing state.

• Distribution regression in higher dimensions. In our experiments, we per-

formed distribution regression for scalar-valued output distributions. Multi-dimension

sensor observations were dealt with by modeling each dimension independently.

Modeling higher dimensions jointly is challenging from a computational stand-

point, since representations such as histograms become memory intensive. Esti-

mation in higher dimensions is also known to be challenging statistically. One

approach to work with higher dimensions is to use copula methods [74]. As an

example, consider a random variable in two dimensions. In the Gaussian copula

method, the marginal cumulative distribution function (cdf) for each dimension is

modeled independently. The joint distribution is then specified using a parametric,

Gaussian distribution (Figure 5.2).

5.2.2 Off-road Lidar simulation

• Further optimizations. Our simulator opens a number of avenues for further

improvements. More parameters of the simulator can be optimized. An example
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Figure 5.2: Gaussian copula. Marginal cdfs are modeled using nonparametric dis-
tribution regression. The joint is modeled using a Gaussian distribution. Figure from

https://en.wikipedia.org/wiki/Copula_(probability_theory).

is the set of modeling parameters used for the hierarchical clustering of point cloud

data. This was the clustering used to generate the ellipsoid scene elements.

Some of our implementation details (such as basic parallel processing) are in Sec-

tion 4.3, but computational efficiency was not the focus of our work. In our opin-

ion the largest gains will be obtained by optimization of ray-element intersection

queries. These are the most basic type of operation in Lidar simulation. They can

be sped up performing queries on tools such as the NVIDIA OptiX ray tracing

engine 1.

• Automated scene generation. Building an off-road scene makes use of a scene

annotation. In this work, we generated the annotation for a real scene manually.

Automating scene generation is a useful step that will make it easier to evaluate

a simulator. Conceptually, this requires off-road vegetation classification and seg-

mentation using Lidar data. We believe this step is a matter of implementation,

and not fundamental research. This view is based on extensive prior work on point

cloud processing, which we briefly review. Our work has already generated labeled

datasets (Section 4.4.3) which can be used for training.

Semantic segmentation of 3D data is a well-studied problem, with applications in

urban scene understanding [64, 75], off-road traversability analysis [76], and agri-

cultural robotics [77–79]. Successful solutions have been developed, as evidenced

by a number of instances of reported classification accuracies in excess of 90%

[77–80]. A common approach is to classify a point based on local shape features,

introduced in [81], and subsequently used in [79, 82, 83]. Additional features that

have been investigated are based on laser remission values [76, 84, 85], and color

[77]. While some work performs classification, followed by segmentation [81], oth-

ers first segment points, and then classify the segments [64, 65, 78]. In the latter

1 https://developer.nvidia.com/optix

https://en.wikipedia.org/wiki/Copula_(probability_theory)
https://developer.nvidia.com/optix
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case, segment-level shape descriptors may be used for classification [64, 75]. By

taking into account knowledge that neighboring points share class labels, results

can be improved by using classifiers based on conditional random fields (CRFs)

[80], or Markov random fields (MRFs) [83]. While vegetation is often considered a

single semantic class, we work with multiple vegetation classes, similar to [77, 78].

In our approach, Lidar data was processed offline, although real-time algorithms

have been developed in [65, 76, 83, 84]. Finally, the source of 3D data in our work

was a Lidar mounted on a ground vehicle. This is not a limitation, as prior work

contains precedents for classifying scene data obtained from other sources, such as

aerial robots [77, 84], and satellite images [82].

In Section 2.2 we referred to the expressiveness of a simulator. We discussed

how scene generation is like a projection from real scenes to the space of simu-

lated scenes. When automating scene generation, we are approximating the ideal

projection. Errors in automated scene generation can thus also lead to errors in

simulation. At the same time, automated scene generation complements expres-

siveness: a simulator may be able to represent reality, but if simulated scenes are

too tedious to construct, the simulator’s value diminishes.

• Lidar generative models. Instead of using a hierarchical clustering to fit ellip-

soids, we could use recent work on compact generative models for point cloud data

by Eckart et al. [86]. In [86], a mixture of Gaussian distributions was used as a

generative model for a given 3D point cloud. This is common with our use of Gaus-

sian distributions for non-ground objects. The key difference is that a top-down

hierarchy of mixture distributions was proposed in [86]. A coarse model could be

obtained by sampling distributions at the top level. Similarly, a fine model corre-

sponded to sampling distributions at the bottom levels. The result was that model

fidelity could be traded off with sampling time. Figure 5.3(a) shows 3D models for

the Stanford bunny at different levels of fidelity. Using the models of [86] in our

work would introduce a similar knob, which is currently missing in our simulator.

Note that the models in [86] worked only with point cloud data. Integrating them

in a Lidar simulator will additionally require considering the geometry of Lidar

rays, including hit probabilities in the mixture distributions, and so on.

The other generative models with recent success in generating 3D objects are

deep learning methods, as in [87]. Figure 5.3(b) shows interpolation between 3D

objects from the training dataset in [87]. Training a Lidar simulator could involve

training a separate neural net (NN) to simulate Lidar readings for each object.

Each primitive in this approach would be an optimized NN, instead of optimized

ellipsoids. NNs from the library could be planted in a new simulated scene, which

would be represented as a mixture of NNs. Given a simulation query, we would
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(a) (b)

Figure 5.3: Compact generative models (a) from [86], and deep learning to generate
3D objects (b) from [87].

have to decide which NN to generate observations from. Simulation would also

have to take into account interaction between the primitive NNs. This is because

a ray may pass through an object, only to hit one behind it.

5.2.3 Simulator evaluation

• Training with application-level simulation risk. The application-level simu-

lation loss measures the value of a simulator for the purpose of application develop-

ment. Given a loss, it is natural to ask if it can be used for training the simulator.

Basic experiments with the indoor planar Lidar suggested that a simulator trained

with the application-level risk was not significantly better than one trained with

an observation-level risk.

In our experience, training with the application-level risk is more cumbersome,

and takes longer. A valid objection is that, while we want a simulator to be

useful for application development, it should not be tied to a single application.

A workaround may be to minimize the application-level risk simultaneously for

many application algorithms. This gives rise to further questions, such as which

combination of applications. Training to minimize the observation-level risk, by

contrast, was found to be faster and simpler. Disconnecting the simulator from an

application introduces a gap between the two: the simulator writes data, which

is then fed into the application, to return a risk. This discontinuity implies that

analytical gradients are not available to optimize the simulator parameters with

respect to the application-level risk. In this work where speed was not the focus,

each calculation of the risk proved to be expensive.

Having shown the utility of the application-level risk, however, we believe this is an

interesting direction. It will require speeding up the Lidar simulator, the applica-

tion, and using intelligent optimization methods. These will allow the optimization

of the simulator parameters to make sufficient progress. We also recommend seed-

ing the training with a simulator already optimized on the observation-level loss.



Chapter 5. Conclusion 96

• Closed-loop applications. We assumed in Section 2.4 that applications are

open-loop. This allowed us to collect a dataset {xi, zi}, and calculate the application-

level risk offline. For closed-loop applications, by contrast, the dataset depends on

the output of the application algorithms. For example, consider closed-loop navi-

gation. Pose estimates q̂i would depend on all past observations, {zj} j = 1 : i, and

influence the next state xi+1 visited. Running the application algorithm with the

same parameters α in simulation would generate a dataset with different states.

Development of open-loop applications is a rich domain with its own challenges,

as explored in this thesis. Development of closed-loop applications, a certain use

of simulators, brings us into the territory of reinforcement learning.

5.3 General sensor simulation outline

(a) (b) (c)

Figure 5.4: (a) In urban scenes, Lidar reflectivity can be used to detect road markings
[88]. (b) Urban reconstruction [89] can be used to generate simulated scenes. (c)

Relevant applications for development are detection and tracking.

Based on our framework, contributions, and experience, we present general guidelines

for the construction of a sensor simulator. As an example, we consider steps for Lidar

simulation in urban scenes.

What kind of real data can be gathered? Data-driven sensor simulation relies on

comparing simulated and real data. It is essential that real data be gathered in conditions

similar to those intended for simulation. For other robot applications, simulation may

be stated as an answer to the problem of gathering adequate real data. The same

answer cannot apply to simulation itself. We insist on having real data, and this makes

constructing a simulator seem as difficult as developing an application on a real robot.

This is exactly the view we promote. A simulator is a predictor that models the complex

behavior of sensors in realistic scenes. There is no reason to expect that the construction

of a simulator should be trivial compared to developing an application in reality.

We understand that setting up a system for gathering real data takes serious engineering

effort. Our off-road Lidar simulation work was only possible because researchers at

NREC had spent valuable time maintaining the platforms used. The payoff on the data
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investment, however, is that future application development can be confidently carried

out in simulation. If real data for training is not available, simulators will remain

immature, specified by hand, untested, and viewed as little more than toy checks for

real robot applications.

What is a suitable sensor model? The sensor model describes how the sensor in-

teracts with the environment. Is a parametric model sufficient? Simple logs of sensor

observations, when visualized as histograms, can reveal if Gaussians are good approx-

imations. Physics-based models can be helpful in deciding what features to choose, or

what input space to work in. If observation distributions are complex, then the alterna-

tive to painstaking parametrization is the use of nonparametric sensor models. These

can adapt to trends in raw histograms, at the cost of requiring more training data.

A helpful exercise is to assume the environment is completely known, and then think

about the sensor model. For Lidars in urban scenes, for example, this means considering

that the state of all objects are known. Lidar returns from flat roads, pavements and

walls may be well-approximated by Gaussian distributions. Modeling reflected intensity

might be important, a problem not considered in this thesis, but to which our methods

readily extend.

How are simulated scenes generated? Simulation using the best sensor models will

be unrealistic if simulated scenes are not realistic. An exercise is to think about the real

scenes an application will be developed for. It should be possible to reconstruct those

kinds of scenes in simulation. Like real data collection, it may take effort to set up scene

generation. Our suggestion is that scene generation also be data-driven. Specifying

scenes by hand becomes unfeasible for complex scenes. Instead, an approach based on

using statistics from real scenes is principled.

For urban scenes, approaches for scene reconstruction from points or images has been

studied in work such as [89, 90]. An additional complexity is the presence of dynamic

objects, such as other vehicles, and pedestrians. Scene modeling was more of a challenge

than sensor modeling for the off-road scenes we considered. This is even more the case

for urban scenes. Simulated urban scene construction was discussed briefly in [27], and

can be explored more thoroughly in our opinion. Data-driven computer vision tools for

scene understanding, visual tracking, and others, can be utilized.

What robot applications will be developed using simulation? Comparing per-

formance of application algorithms in reality versus simulation is a measure that can

be interpreted by developers working on applications. It can influence their decision to

develop on simulation instead of reality, and lead to savings of time and effort. There
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may be many routes to constructing a simulator, but the application-level risk places

them on a comparable footing.

No matter how good simulators become, we believe applications will not (and should

not) be deployed before final testing in reality. This process generates real data that can

then be used for further simulator training and evaluation. Consider a Lidar simulator

for urban scenes which has low application-level risk for state estimation in regular traffic

conditions. For testing the state estimation in a new, but standard, city block, using

simulated data is justified. If we then wanted to test estimation under reduced sensing,

we might have to go out and collect real data. The simulator can then be evaluated and

trained to model reduced sensing as well. In this manner, sensor simulation and robot

application development can benefit from each other. The data-driven methods of this

thesis can be used to assess and improve performance, and bring Lidar simulation for

robotics closer to reality.

application development timeline

simulation reality

Figure 5.5: Our work is a step in the direction of reducing the gap between simulation
and reality for robot application development.
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